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Qualitative properties of the multitype measure branching process and its occupation time process are 

investigated, including martingale properties, Hausdorff dimension of supports, existence of densities 

and stochastic equations. 
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1. Introduction 

The multitype measure branching process (MMBP), or multitype Dawson- Watanabe 

process, is a vector measure-valued process which arises as a small particle limit of 

a system of particles of several types undergoing random migration, branching and 

mutation. It is a natural generalization of the monotype case, the main new feature 

being the interaction of types produced by the mutations. The existence and charac- 

terization of this process was established by Gorostiza and L6pez-Mimbela [lo] 

following the martingale approach used by Roelly-Coppoletta [24] in the monotype 

case. Continuous state multitype measure branching processes (without motion) 

have been considered by Rhyzhov and Skorokhod [23] and Watanabe [26]. 

The purpose of the present paper is to investigate some properties of the MMBP 

and its corresponding occupation time process, generalizing the known results for 

the monotype case. The scaling involved in the approximating branching particle 

system is such that in the limit each particle produces offspring of its own type only. 

However, the approximation allows the presence of an interaction of types in the 

limit; this effect is represented by the interaction of types matrix D, which appears 

in the linear part of the non linear equation (2.5) for the cumulant semigroup of 
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the MMBP. Hence it is reasonable to expect that at least some properties of the 

components of the MMBP are the same as in the monotype case. We will show that 

this is true for support properties (Theorems 3.1 and 3.5). The main ideas of the 

proofs are similar to the monotype case [3,8,24,27], but new technical problems 

arise due to the interaction effect. In contrast, the interaction has non trivial 

consequences on other aspects of the MMBP, such as persistence properties [12]. 

We remark that even in the monotype case our model is somewhat more general 

than those previously studied, and hence some of our results in this case may be 

considered new; e.g. the conditions for the existence of a density (Theorem 3.5) do 

not require spatial homogeneity of the processes. 

In Section 2 we recall the approximating particle system, the scaling which yields 

the MMBP and the characterization of the process, and we define and characterize 

the occupation time process. Section 3 begins with a brief summary of the properties 

of the monotype process which we wish to extend, and then the properties of the 

MMBP are given. Since some of the theorems are natural extensions of the monotype 

case, their proofs will be omitted or only outlined. Detailed proofs and additional 

information are available in the technical report [ 111. 

In the remainder of this section we give some necessary technical background 

and notation. 

For p > 0, let 

where CF([Wd) is the space of infinitely differentiable real-valued functions on IWd 

with compact support, and 

with /. 1 the usual norm on IWd. Let C,(IWd) designate the Banach space of real 

continuous functions cp on [Wd with norm 

Note that K,(Rd) c C,(Rd). By C,([Wd)+ we denote the set of non-negative elements 

of C,(Rd). 

Let &,(R”) denote the space of non-negative Radon measures p on Rd such that 

] ‘p,, dp < 03. The Lebesgue measure belongs to Ju,(lw”) forp > $d. The spaces C,,(Rd) 

and &,(Rd) are in duality, and we write 

Any p E Ju,,(rW”) is uniquely determined by {(CL, cp): cp E K,(Rd)}. 

The spherically symmetric stable process on Rd with exponent (Y, 0 < (Y G 2, is a 

homogeneous Markov process with infinitesimal generator given by A, = -(-A)-‘*. 

We denote by {Sp , t 2 0} the semigroup generated by A,. If p > $4 and in addition 

p < $(d + a) in case (Y < 2, then K,(lRd) c 9(A,), where 9(A,) is the domain of A, 
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in C,(Rd), the operators A, and SF for each t map &,(I@) continuously into 

C,,(W”), and f+ Spq is a continuous curve in C,,(Rd) for each cp E C,(Rd) such that 

limi.+, cp(x)/cp,(x) exists. (See [2] for details.) 

Due to the above facts, all the forthcoming expressions (in particular time 

integrals) are well-defined. 

We define, for k = 1,2,. . . , 

P=(Pl,‘.‘, Pk) E (Ju,@“N”, (o=((P,,..., ak) E (Cp(Rd))k. 
For a set %Yc Rd xR+ and TV R, we denote %, ={xe Rd, (x, t) E %}, and for 

%?=(%,,..., %?k) E (Rd x R+)k, we write %?, = ((e,,,, . . . , %,,). 

AC stands for the Lebesgue measure restricted to a Bore1 set C = lQd, and we write 

P=(&-,PkkR:, v=(((Pl,...,(PkL 

C=(C,,..., Ck), Ci Bore1 sets of Rd. 

D(R+, (Ju,(R”))“) is the space of functions from R, into (J$(Wd))” which are 

right-continuous and possess left limits, with a Skorokhod topology. 

Occasionally we will need to refer to the probability space where our processes 

are defined, and we denote it by (a, 9, P). 

Functions of time are written f(t) or fr according to notational convenience. 

K stands for a positive constant which may vary from place to place. 

2. The multitype measure branching process and its occupation time process 

The ingredients of the MMBP are understood from the approximating particle 

system and the scaling, which we describe presently. 

The system consists of particles of k 2 1 types in Rd, d 2 1, which evolve in the 

following manner. At time t = 0 particles of type i are distributed according to a 

random JU,(Rd)-valued point measure pi, i = 1,. . . , k, independently of the other 

types. In addition particles of type i immigrate according to a Poisson random field 

on Rd x Iw, with intensity measure piA%,, where pi 2 0 and %‘, is a Bore1 set of 

RdXR+, i=l,..., k, these random fields being independent of each other and of 

the initial random measures. (We assume the Cei are sufficiently smooth so that the 

integrals over the t-sections of these sets are well behaved). 

Each particle of type i independently migrates as a symmetric stable process in 

Rd with exponent (Y~, 0 < q G 2, and at the end of an exponentially distributed 

lifetime with parameter V, it produces offspring of each type according to a branching 

law 

{p,(j ,,..., j,),jI ,..., jk=O,l,... }, i=l,..., k, 
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(i.e. p,(jr, . . . ,j,) is the probability that j, particles of type h are produced, h = 

1,. . . , k). The mean and the second and third factorial moments of the branching 

law pl, which we assume to be finite, are given by 

ml”(h)= C pi(ji,. . . , jk )_ih , 
j,,...,jcaO 

mi2’(hT I) = c pi(j,) . . . ,jk)jh(j, - &l)r 
j,....,jkaO 

d3’(h,l,n)= C pi(j,,...,jk)jh(jl-~hl)(jn-~nh-~n,)r 
jl.....Jk~O 

i, h, l, n=l,..., k, where 6, is the Kronecker delta. We define the mean matrix 

~‘l’=[~~“(h)li,h=~,...,k, 

and the bilinear functions 

k 

M12’(x,y) = c mj2’(h, l)XhYI, 

h,l=l 

x=(x ,,..., xk),y=(_,$ ,..., yk)dtk, i=l,..., k. 

Let N,(r, A) denote the number of particles of type i present in the Bore1 set 

A c Rd at time t, i = 1, . . . , k, and consider the process 

N={N(t), tso}-{(N,(t) ,..., Nk(t)), tao}. 

Under the conditions above N has a version in D(IW+, (J&(K!~))~) for p>qd [19]. 

We now introduce the scaling, indexed by K 2 1, which yields the MMBP. 

The initial random measures are assumed to converge: p F J/-Li as K + 00, where 

pi is a deterministic element of A,(IWd), i = 1,. . . , k. (Random limits p, can also 

be considered.) The Poisson intensities of the immigrant particles are Kpi, i = 

1 . . 3 
r;;‘e 

k. The lifetime distribution parameter of a particle of type i is KV,, i = 1, . . . , k. 

moments of the branching law {pF}j,i,...,k satisfy the conditions 

lim m?(2) (h, I) = mj2’( h, I), 
K-C= 

(2.1) 

sup m,f,(3)( h, 1, n) < +a, i, h, 1, n = 1, . . . , k. 
Ka1 

(The condition on the third moments may be replaced by a weaker one of Lindeberg 

type, as in [16, Theorem 4.2.21.) 

It is important to observe the meaning of the conditions (2.1). It is easy to show 

(see [ 191) that these conditions imply that the branching law is asymptotically critical 

with mean matrix I = [a,], and 

mj’)(h, I) = 0 if h # i or I # i. (2.2) 
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Hence in the limit the particles of each type produce only offspring of their own 

type, and the average number of offspring of each particle is one. However, the 

matrix DK = [ d$], which multiplied by K-’ measures the discrepancy of the mean 

matrix MK,“’ = [mF3”)(j)] from the critical mean matrix Z, converges to a matrix 

D = [d,] as K + +a. We call D the interaction of types matrix because it represents 

the asymptotic effect of mutations of types in the system (if it is not diagonal). 

In addition to D = [d,] we will use the following notation: 

CL = (LL,, . . . , PUN), A, = diag(A,,, . . . , A,,), V = diad 6,. . . , VA, 

MC2)= (IkPi2’, . . . ) My’) &f!yX x) = m!2’x? ) ( ) , I, 

m)‘)= mj”(i, i), i= 1,. . . , k. 

Let NK denote the process N defined above subject to the previous scaling. In 

addition we assume that each particle of every type has a mass equal to l/K, and 

we consider the mass process XK = K-INK. The main result proved in [lo] (assum- 

ing the p? are Poisson random fields) is the following: 

Proposition 2.1. XK JX in D(W+, (A$,(Rd))“) us K + ~0, where X is an (JR,(R~))~- 

valued Markov process which is the unique continuous solution of the following martin- 

gale problem: For each +o E (K,,(Rd))k the process 

(x(t), v)-_(P, v)- I ’ ((x(s), (Am+ VD)v)+Ww.,, v)) ds, t 30, (2.3) 
0 

is a martingale with increasing process 

(X(s), VM’2’(q, VP)) ds, t 2 0. 0 

Remark. XK JX actually takes place in D(R+, (A,(k”))“), where fid is a one-point 

compactification of Rd (note that J&,(I%!“) is locally compact [ 121; on this point see 

also [7]). p is restricted to p > id, and in addition p < i(d + min{a, , . . . , ak}) if 

min{a,, . . . , ak} < 2. Henceforth these conditions on p are assumed. It is shown in 

[19] that X has a version in D(R+, (J&,(R~))~). 

The MMBP is the solution X of the above martingale problem. Another charac- 

terization of X, also given in [lo], is a continuous (~&,(R~))~-valued Markov process 

whose transition Laplace functional is given by 

L,(V) = E[exp{-(X(t), p)] I X(O) = ~1 

= exp -(p,H(t))- 
I 

‘@&+(t-s))ds 
0 

v E (Cp(~“)+)“, P E w,(~d))k, t 30, (2.4) 
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where H(t, x)( = H,(x) = H(q, t, x) = H,(p, x)) is a non-linear semigroup, the so- 

called cumulant semigroup, which is the unique global (classical) solution of the 

initial value problem 

;H(t)=(A,+VD)H(t)-fV@(H(t),H(t)), t>O, 
_. 

H(O) = 8, (2.5) 

when q E 9(A,) = 9(Aal) x . . . x 9(A,,), or the unique global (mild) solution of 

the equation 

H(t)= T&9-$ 
I 

I 
VT,_,JW”‘(H(s), H(s)) ds, t 30, (2.6) 

0 

when q E ( C,([Wd))k, where {T,, t 2 0} is the semigroup generated by A, + VD. 

(Equation (2.5) has a unique solution on a maximal interval [0, T,,,] [22]. For 

a diagonal matrix D, T,,,,, = + ~0 [5]. For a general matrix D, also T,,,, = + 00 because 

this corresponds to a bounded linear perturbation of the equation with diagonal D.) 

We observe that since or. can be chosen arbitrarily, (2.4) implies that if H(0) has 

non-negative components then H(t) also has non-negative components for all t > 0. 

We also note that if the initial measures CL,, . . . , pk are finite, and the spatial parts 

of the immigration sets Ce,, . . . , (ek are bounded, then the components of the MMBP 

are finite measure-valued for all t > 0 (see [24]). 

The occupation time process of the MMBP X is the (Ap([Wd))k-valued process Y 

defined by 

(Y(t),qe)= ‘GW,dds, I tao, $oE(C,(R”))“. 
0 

In the (critical) monotype case this process was introduced and studied by Iscoe 

[13], and its properties (in particular limit behaviour) have been investigated by 

Cox and Criffeath [l], Dynkin [4], Fleischmann [8], Fleischmann and Glrtner [9] 

and Iscoe [14,15]. 

We will describe the process Y by generalizing the method of El Karoui and 

Roelly [7] in the monotype case, i.e. using the exponential martingale characteriz- 

ation of X and making a change of probability on the distribution of X. 

Proposition 2.2. The Laplace functional of Y(t) is given by 

E exp{ -(Y(t), v)) = exp 
i 

-(P, &(a 0)) - (P&F.~, &(P, 0)) ds 

v E (CpW)+)“, (2.7) 

where X(0) =I_L E (.itI,(W”))“, _ * and H(t) = H,(+q I,!J) is the non-linear cumulant semi- 

group which solves 

;fi(t)=y,+(A,+VD)ti(t)-$V@(ti(r),k(t)), t>O, 

k(O) = + E (KP(Rd))k. (2.8) 



L.G. Gorostiza, S. Roelly / Measure branching process 265 

Proof. By the proof of Proposition 5.5 of [lo] we know that X is characterized 

by the following martingale property: if P denotes the distribution of X on 

ID@+, (Ju,(Rd))k), then for each + E (K,,(Rd))k the process 

W(+)- exp - (X(l), +)- 
1 ( 5: 

((X(s), (A, + vo)+V+(K&\, +) 

-(X(S)&%~‘~‘(+,, t,%)))ds , ta0, 
>I 

(2.9) 

is a P-local martingale. 

Let Q be the probability on ID@+, (J&([W~))~) defined on S,,, the q-algebra 

generated by {X(s), s c t}, by 

Q=exp 
1 I 

- ‘(X(s),q)ds P. 
0 1 

Then Q is the distribution of an MMBP associated to the non-linear cumulant 
_ 

semigroup H,(q, .). In particular, if t is the lifetime of X, which is equal to +OO 

P-a.s., then from (2.9) applied to + = 0 we have 

1 I 

f 
EP exp - (X(s), p) ds 

0 I 

= EQ~{,<<I 

The occupation time process can be extended to a linear functional of X which 

acts on time-dependent functions (see [5, Theorem 6; 11, Proposition 2.31). 

3. Properties of the multitype measure branching process 

The following results are known in the monotype case without immigration: For 

fixed t > 0, X(t) has a random support B such that dim(B) = min{cY, d} a.s. [3,27]. 

Assuming spatial homogeneity, i.e. the initial measure p is proportional to Lebesgue 

measure, then for fixed t > 0, if d = 1, X(t) has a density if and only if 1< (Y s 2 

[24], and if d s 3, Y(t) has a density if and only if id < a G 2 [8]. The process X 

satisfies a stochastic evolution equation where the driving term is a martingale 

measure [21], and in the case of existence of a density process, this process satisfies 

a stochastic differential equation [18,21]. In this section we will extend these results 

for the multitype case. 

Clearly, if the interaction matrix D is diagonal, the components of the MMBP 

are independent monotype measure branching processes, and in this case their 
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properties are just those of the monotype case. The new problems arise from the 

non-zero off-diagonal elements of D. 

We recall that the MMBP and the occupation time process are denoted by 

X=(X,,..., X,) and Y = (Yr, . . . , Yk), respectively. 

3.1. Hausdorf dimension of a random support 

We will assume here that there is no immigration (p = 0). 

We will prove that even in the presence of interaction of types (i.e. the matrix 

D is not diagonal), the results obtained by Zahle [27] in the monotype case (k = 1, 

DE R) can be extended to the multitype case. 

Theoyn 3.1. For each t > 0, X(t) has a random support 

B(w)=B,(w)x *** XBk(W)C(R 
d k 

)) w E n, 

such thatfori=l,...,k, 

dim(&) = min{c-ui, d} a.s. 

and 

X,(t,&nK)=X,(t,K) a.s. 

for every compact subset K of Rd. 

Zahle [27] proved this result in the monotype case using the basic ideas of Dawson 

and Hochberg [3] for the upper bound and a new criterion for the lower bound. 

The upper bound for the Hausdorff dimension of the support of a (general) random 

measure is estimated by a probabilistic generalization of the dimension of the Cantor 

set, that is, by means of a local analysis of the number of subcubes of a fine 

subdivision charged by the random measure. Moreover, by using the fact that the 

measure branching process X, is infinitely divisible, it is decomposed as a random 

sum of random measures whose spatial diffusion is better controlled. The lower 

bound results from an estimate of the Campbell measure. 

However, we cannot apply directly Zahle’s criteria, since he studies random 

measures, and in the multitype case we have random vector measures whose 

components in addition interact. We will give here a proof following the same steps 

as in [27], but which is not a straightforward generalization of the monotype case. 

X(t) is infinitely divisible, and, by a direct generalization of Kallenberg [ 171, its 

Levy-Khintchine decomposition is 

E exp{ -(X(r), ~0)) 

= exp{ -(X(O), H(44 t))], 

= exp{ -E, L I,.,,,,,,. (1 -exp{ -h p)l)Qj(tv x, dm)Xj(O)(dx)}. 
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We will firstly derive some results we shall need. Letting X(0) = (0, . . . ,6,, . . . , O), 

6, being the jth component, we have 

Hj(P3 t>(x) = J w-w~)k 
(1 -exp{-h Vp>>>Qj(t, X, dm), 

and Hj(p, t)(x) = IYj(p, t)(x) with +D = (0,. . . , cp, . . . , 0), cp being the ith component. 

For the constant function cp = A, 

Hj(A, t)(x) = 
J w,-~oI)k 

(l-exp{-(m,A)})Qj(t,x,d(O,...,m,...,O)), (3.1) 

where {Hj(A, t)}, satisfies the system of equations (see (2.5)) 

; H;(t) = y ; d,,Hf(t) -fyMjHJ(t)2, Mj EZ mj2), 
/=I 

H;(o) = A 6,. 

Unlike the monotype case, we cannot solve this system explicitly. However, all 

we will need is the approximate behaviour of the solution for small t. Since Hj( t) + 0 

as t+ 0 for j # i, then H;(t) satisfies approximately the same equation as in the 

monotype case for small t, and therefore 

Z-I,“(h, t)=AVpjj e~d~~‘(A~~Mj(e~d~~‘-l)+ yd,))’ 

=A/(A&M,t+l) 

for small t. On the other hand, for j f i, 

H;(A, t) = ydjitHj(A, t) % H:(A, t) 

for small t. From (3.1) we have 

QJ(tv 4 Ap -{Ol) c QjC4 4 (0, . . .p Ap -{Oil, . . .y 0)) 

= ii”, Hj(A, t)(x), 

and therefore 

QI’( t, x, Alp - {0}) = 2/ V,Mjt 

and 

(3.2) 

(3.3) 

Qj(t,x,Jdz,--{O})g2/vMit, i#j, (3.4) 

for all x and small t. (The exchange of limits in A and t is possible because Hj(A, t), 

as a cumulant, is an increasing function of A). 

We will consider the support of Xi(t) for fixed i, and may take without loss of 

generality i = 1 (for notational convenience). Since the matrix D is not diagonal in 

general, X,(t) depends on X,(O), j = 1,. . . , k. 

For cp E C,(Rd) we denote q = (q, . . . , O), and then 

(X,(r), cp> = (X(t), Vc>. 

The following lemma, which generalizes Step 2 of the proof of Theorem 7.1 [27] 

gives a Poissonian decomposition of X,(t). 
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Lemma 3.2. X,(t) has the same distribution as 

i 7 c~:.j.~, 
j=1 !=I 

where 

(i) W(, j=l,..., k, are independent Poisson random variables with respective 

parameters 

wj= 
I Q,:(t, X, A,, -{Ol)Xj(O)(dx), j = 1,. . . , k (3.5) 

where Q:(t) is dejined in (3.2). 

(ii) {C:‘Ai}i,j are independent random measures. For each i, CFAi has distribution 

Q:(t,x,.)/Q:(t,x.~p-{O}) and Laplace functional 1 - Hj(. , t)(x)/ Q:( t, x, A,, - 

ov). 
(iii) {Zj}i,j are independent Rd-valued r.v.‘s, and for each i, Z{ has distribution 

xj(“)l(xj(o), I). I3 

We will show, similarly as in Step 4 of the proof of Theorem 7.1 [27], that X,(t) 

charges essentially small balls centered at the points 2:. 

Lemma 3.3. Let { B$},,, be balls of radius n/2” centered at thepointszj, i = 1, . . , W:,, , 

j=l,..., k, with t, =2-“1”. Then, for large n, 

E(X,(L($; B;)c))2 
G K ji, ((X,(O), l)+(Xj(O), 1)2)(2paln+n-2al). 

Proof. Using the decomposition given in Lemma 3.2, we have 

SK i (EW;,,E(Ct:.‘.’ ((By,)‘))*+ E(W;,,)*(EC:?(B,“I)~))*) 
;=I 

with E Win = w:,, . 
The moments of C.>‘,’ are derived from its Laplace functional (see the proof of 

Theorem 3.5 below for a detailed computation of this sort): 

E( C$ , cP>=(Xj(o),l)(w:)~'~,(t)S~L~(x) 

and 

E(C:.‘,‘, Cp)’ = (X,(O), l)(w:)Y’ V, ’ i J;,(’ - S)SPi,M,(fil(S)SY’~)*(X) dst 

where J;,(t) = (exp{ VDt}),. 

The same estimates used in Step 5 ofTheorem 7.1 in [27] give the desired result. 0 
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In the next lemma we show that the hypotheses of Lemma 3.1 of [3] are fulfilled. 

Lemma 3.4. If ,B < a,, there exists sequences v,,, 6, + 0-C such that for large n, 

log N~‘“Bw,(t,)) 
log 2” 

>~,+%I S K ,;, ((Xj(O), 1)+(X,(O), 1j2)6,. (3.6) 

Proof. By Lemma 3.3, 

P( N;‘““(X,( t,)) > (2n)dn’2”1”) 

k 

c w:,z G n22”1”, 
;=r 

X,(tn,(; $;:)‘)>l,nP) 

+ K ; ((x,(o), 1)+(x,(o), 1)2)n’P(2-“1”+ n?“‘) 
,=L 

for large n, and by (3.2), (3.3) and (3.5), 

W; ,I s K(x,(o), 1)2a’n 

and 

w:,, Q K(X,(O), l)2”ln, j = 2,. . . , k. 0 

Proof of Theorem 3.1. The upper bound results from Lemmas 3.2, 3.3 and 3.4. The 

lower bound is a simple generalization of Theorem 7.2 in [27]. 0 

3.2. Existence of densities 

In this section we shall assume that the initial measures pi satisfy the condition 

sup sup 
I OG~-TJER~ [We 

P:,(x, y)pu,(dx) < ~0 (3.7) 

for fixed T > 0, where pPl(x, y) denotes the transition density of the symmetric stable 

process with exponent aj, for i, j = 1,. . . , k. This condition holds in particular for 

measures that are dominated by a constant times the Lebesgue measure and for 

finite sums of Dirac measures. 

We will prove that the conditions for existence of densities of the components 

of X(t) and Y(t) are the same with and without interaction of types, and hence 

the same as in the monotype case (see [8,24] for the spatially homogeneous 

monotype case without immigration). 

Theorem 3.5. (i) Ifd=l, thenforeach i=l,...,kandfixed t>O, Xi(t) hasan 

L2(0)-density if and only if 1 < (Y- , s 2, and this density is L2(0)-continuous on Rd. 

(ii) If d ~3, then for each i = 1,. . . , k and$xed t > 0, y(t) has an L2( a)-density 

if and only if id < a, s 2, and this density is L”(n)-continuous on R“. 
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Proof. (i) The second moment of (X(t), 9) is derived from the first and second 

derivatives with respect to A of the Laplace functional L,(hq) given by (2.4), setting 

A = 0. We find, since H(0, t) = 0, 

‘ (P&y, H’(t -s)) ds 
> 

2 

E(X(t), ~0)~ = (cc, H’(r))+ 

where 

-(lu,H”(t))- ‘(Pn,,Jf”(f-Ws, I 0 
(3.8) 

H’(r)=&H(hq, t)lAzo and H”(f)=$H(~qq t)lAEO 

satisfy 

and 

; H’(t) = (A, + VD)H’( t), 

H’(O) = 40, 

5 H”(t) = (A, + VD)H”( t) - VM(*)(H’( t), H’(t)), 

H”( 0) = 0, 

respectively. Hence 

H’(t) = T,q and H”(t) - T,_,VM’2’( T,q, 7”~) ds. 

Writing f(t) - exp{ VDt}, we have 

(T,q)j= 5 _fjt(t)SPf~t, j=l,...,k; 
/=I 

in particular, for q = (0,. . . , cp, . . ,O), cp being the ith component, 

(T,q)j=J;,(t)S;zcp, j=l,..., k. 

Substituting into (3.8) we obtain, for each i = 1,. . . , k, 
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2 

dYpjCLj(dx)dsdr, (3.9) 

which can be written as 

E(Xi(t), CP>’ = WY, z)cp(~Mz) dy dz, (3.10) 

where kf(y, z) is a measurable kernel on Rd xIWd. 

We will apply the following criterion: a random field whose second moment is 

given by an expression like (3.10) possesses an L2(fl)-density if and only if the 

function y + (kf(y, y))“’ is locally integrable (see [20, Theorem 3, in the case d = 11). 

We observe from (3.9) that the local integrability of (kf(y, y))“’ is determined by 

the behaviour ofpyl(y, y) nears = 0. Indeed, using condition (3.7) and the Chapman- 

Kolmogorov relation, from (3.9) we have 

IW, Y)I s K ( Ii? I_lji(t)I’+ I? (I’ I.!ji(r)l dr)2 
j=l j=1 0 

+ ; Ii ’ If;df - s)lf:,W~,";(~, Y) ds 
j=l I=1 I 0 

IJdt - r - s)lf%s)pXy, Y) ds dr 
> 

. (3.11) 

But the scaling property of the symmetric stable density implies pEz(y, y) = 

uPd’“~pp~(O, 0). Hence Iki(y, Y)/“~ is locally integrable if and only if the right hand 

side of (3.1 l), which is independent of y, is finite, i.e. if and only if czi > 1, since d = 1. 

Thus Xi(t) has an L2(0)-density if and only if q > 1, and this density is L2(R)- 

continuous by Theorem 5 in [20]. 

(ii) The proof is similar to the previous one, so we will only give a sketch. From 

(2.7) and (2.8) we obtain 

> 
2 

where H’(t) and fi;I”(t) satisfy 

; I?(t) = q + (A, + VD)ii'( t), 

I?(O) = 0, 
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and 

: I?(t) = (A, + VD)f?'( t) - VM’*‘( i?( t), i?(t)), 

I?, 0) = 0, 

respectively. Hence 

I 

I 

i?(t) = T,P ds 

0 

and 

Therefore the computations are the same as in (i) with T,q replaced by ji T,p ds. 

Then the kernel will have a bound analogous to (3.11), which will be finite if and 

only if 

i.e. if and only if czi > $f. 0 

Remarks. (a) It can also be shown that the L’(n)-densities of X(t) and Y(t) are 

L*( 0) -continuous functions of t. 

(b) We observe that the immigration has no effect on the conditions for existence 

of a density, and time integration of the MMBP yields a gain (with respect to 

dimension) in absolute continuity. For the overlapping dimensions czi s d < 2~, there 

is a sharp contrast between the supports of the MMBP and its occupation time 

process. 

(c) In the monotype case with spatial homogeneity and no immigration, Fleisch- 

mann [8] has obtained similar results when the system has a certain branching law 

which belongs to the domain of normal attraction of a stable law with exponent 

(2; in this case the process does not have finite second moments. 

3.3. Stochastic equations 

Meleard and Roelly-Coppoletta [21] proved that the monotype measure branching 

process satisfies a stochastic evolution equation where the driving term is a martingale 

measure. We refer to [6,25] for martingale measures. The following results are 

direct extensions of those for the monotype case. 

Theorem 3.6. (i) The MMBP X satisjies the stochastic evolution equation 

dX(t)=((A,+VD)*X(t)+pA,,)dt+dM(t), 120, 

X(0) = I-% 
(3.12) 
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where M is an ( L2( 0, 9, P))k-valued continuous orthogonal martingale measure 

with (.AA,,(Rd))k-uaZued intensity measure VMC2’X( t, dx) dt. Moreover, 

M = (M ‘, _ . . , Mk), where for each i = 1, . _ . , k, M’ is an L2( 0, 9, P)-valued con- 

tinuous orthogonal martingale measure with A,(Rd)-valued intensity measure 

V.m!2’X.( t dx) dt and M’ 1, I, 3 . . . 3 Mk are orthogonal to each other. 

(ii) If X,(t) admits a density x:(x) for each i = 1,. . . , k, and t E lR+, then the 

martingale measure Mf can be represented as MI = ( Vim~2)x~)1’2 Wf, i = 1,. . . , k, 

where W’,..., Wk are independent white noises on Rd x [w, with intensity dx dt. In 

this case the density process x, = (x: , . . . , x:) satisfies the stochastic evolution equation 

dx, = ((Aa + VD)*x, + PA,,) dt + ( Vm’2)x,)“2 d W,, (3.13) 

where 

( Vm(2)x,)1’2 d W, = (( VIm(12)x:)1’2 d W:, _ . . , ( Vkm(,2)xf)“2 d Wf). 0 

See [21] concerning the interpretation of the formal equation (3.12) as a variation 

of constants equation. 

Equation (3.13) is compatible with the result of Konno and Shiga [18] in the 

critical monotype case without immigration, who give an equation for x, in the 

space of Schwartz distributions. 

Final remark. Theorem 3.1 shows that the mutations do not produce an interaction 

of the dimensions of the supports of the components of the MMBP. An interesting 

question is if the supports themselves interact. 
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