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2 J. FRITZ AND S. ROELLY AND H. ZESSIN1. IntroductionThe main purpose of this paper is to identify a class of stationary states of the followingsystem of interacting particles as the set of translation invariant canonical Gibbs states withinteraction U : The evolution law is given by an in�nite system of stochastic di�erentialequations, d!k = �12Xj 6=k grad U(!k � !j) dt+ dwk ; !k(0) = �k ; k 2 S (1.1)where S is a countable index set, w = (wk)k2S is a family of independent standard d-dimensional Wiener processes, and each !k = !k(t) ; t � 0 is assumed to be a continuoustrajectory in Rd : The potential U : Rd 7! R is symmetric and superstable with �nite range,that is U(x) = U(�x) ; there is an R > 0 such that U(x) = 0 if jxj > R ; and we haveconstants A � 0 ; B > 0 such that for any �nite sequence q1; q2; :::; qn of not necessarilydistinct points from Rd nA+ nXk=1Xj 6=kU(qk � qj ) � BN (1.2)where N is the number of pairs fj; kg such that jqk � qj j � R ; see [Ru1]. Let 
 denotethe set of con�gurations having no limit points. Although the right hand side of (1.1) iscertainly well de�ned for such, locally �nite con�gurations ! 2 
 ; to develop a satisfactoryexistence theory we have to restrict the con�guration space in a much more radical way.On the other hand, the set of allowed con�gurations should be large enough to support apossibly wide set probability measures including Gibbs states with various interactions.The �rst mathematical results concerning this model go back to R. Lang, see [La1] and[La2], where the existence of equilibrium dynamics, and also the canonical Gibbs propertyof reversible measures is proven. These dynamics is de�ned almost surely with respect toa Gibbs state with interaction U ; see also the more sophisticated argument of [Os]. Fora study of stationary measures in general, we need a more direct construction involvingexplicit bounds on the rate of convergence of solutions to �nite subsystems (partial dynam-ics) when the number of active particles tends to in�nity, see Section 3 below. Indeed, theproblem of stationary measures can not be solved at a formal level of the stationary Kol-mogorov equation, see [FFL] and [FLO], we really need that that our measure is realizedas a stationary state of a well controlled Markov process.For a generic, locally �nite con�guration ! = (!k)k2S let H(!;m; r) denote total energyin the ball B(m; r) of center m 2 Rd and radius r � 1 ; and for � � 0 de�neH�(!) : = supm2Zd supr2N H�!;m; rg1=d� (m)�rdg�(m) whereH(!;m; r) := 12 X!k2B(m;r) Xj 6=k;!j2B(m;r) U(!j � !k)g�(u) := 1 + juj� log(1 + juj) for u 2 R;Rd : (1.3)



STATIONARY STATES 3The set of allowed con�gurations is now speci�ed as 
� := f! 2 
 : H�(!) < +1g ;we shall see that for an e�ective a priori bound we need � � 2 � d=2 ; thus d � 4 : LetC0(Rd) denote the space of continuous ' : Rd 7! R of compact support. Spaces of k timescontinuously di�erentiable functions with compact supports are marked by a superscript k ;while a subscript b in place of 0 refers to bounded functions without any support condition.For an open and bounded domain � � Rd the �-�eld F� is generated by the variables!(') :=Pk2S '(!k) such that the support of ' 2 C0(Rd) is contained in � ; the numberof points in � will be denoted by !(�) : This means that con�gurations are interpretedas nonnegative, integer valued measures, and 
� is equipped with the associated weaktopology and Borel structure. Observe that, due to superstability (1.2), the level sets
�;h := [H�(!) � h] are compact if h is large enough. The restriction of ! 2 
� to � is!� ; and �c denotes the complement of � :For any bounded domain � � Rd and � 2 
� ; n 2 N let ��(nj�) denote the set of ! 2
� such that !(�) = n and !�c = ��c : A probability measure � is a canonical Gibbs state(with unit temperature) for U if its conditional distribution �[d!�j!�c ; !(�) =n] ; giventhe con�guration outside of � and the number of points in � ; admits an nd-dimensionalLebesgue density f�;n ;f�;n(!�j!�c ) : = exp��H�;n(!�j!�c )�Z�;n(!�c ) if ! 2 ��(nj!�c) ;H�;n(!�j!�c ) : = 12 X!k2� X!j2�U(!k � !j) + X!k2� X!j2�c U(!k � !j) (1.4)where �� denotes the summation for such pairs fj; kg that at least one of !j and !kbelongs to � ; Z is the canonical partition function (normalization). Gibbs states are theextremal canonical measures, see e.g. [G]. In view of the superstability estimates of [R2],there exits at least one translation invariant Gibbs state � such that �(
0) = 1 ; of course
� � 
� if � > � :The unique strong solution ! = !(t; �) to the in�nite system (1.1) with initial con-�guration � 2 
� is constructed as the a.s limit of partial solutions !� = !�(t; �) whena spatial cuto� � is removed. To ensure the convergence of partial dynamics we have toassume that � � 2� d=2 : Like in [F2], partial dynamics also preserve any canonical Gibbsmeasure because we keep particles within a bounded domain, while external particles arefrozen. More precisely, for any � 2 C10(Rd) such that 0 � � � 1 there is a di�erentialoperator L� ; L�� := 12 Xk2S dXi=1 eHk(!)@k;i��(!k)e�Hk(!)@k;i�(!)� (1.5)where @k;i denotes di�erentiation with respect to the i coordinate of !k andHk(!) :=Xj 6=kU(!j � !k) : (1.6)We consider L� as the (formal) generator of partial dynamics with cuto� � ; the in�nitesystem (1.1) corresponds to � � 1 : All generators of this kind are certainly well de�ned



4 J. FRITZ AND S. ROELLY AND H. ZESSINon C20 (
) ; where Ck0 (
) is the space of test functions�(!) =  �!('1); !('2); :::; !('`)� ;  2 Ckb (R`) ; 'j 2 Ck0 (Rd) ; ` 2 N (1.7)The stochastic equations for cuto� � read asd!k = 12 eHk@k��(!k)e�Hk� dt+p�(!k) dwk ; (1.8)they have a unique strong solution !� = !�(t; �) for each initial con�guration � : If � �supp � then the particle number in � is a constant of motion, that is !�(t; �)(�) � �(�) :Therefore (1.8) de�nes a fairly regular di�usion in each ��(nj�) ; and it is easy to verifythat the realizations of the canonical conditional distribution �[d!�j!�c ; !(�)=n] are allreversible measures of the associated (nd-dimensional) di�usion process for every n 2 Nand external con�guration !�c = ��c : The associated Markov semigroup will be denotedas Pt� ; it is strongly continuous in C(
�) and also in L2(
�; �) whenever � is a canonicalGibbs state.In the paper [F2] it is shown that for every initial con�guration � 2 
0 a sequenceof partial solutions !�(t; �) converges almost surely to a strong solution ! � !1(t; �) of(1.1) as � ! 1 : This limiting solution is distinguished by an a priori bound: H0(!(t; �)is bounded on �nite intervals of time, and there is no other solution having this property.Following the lines of the proof we see that the result extends immediately to all � �2 � d=2 ; see Proposition 1 in Section 3. The limiting semigroup, Pt is less regular thanpartial dynamics, the Hille-Yoshida theory is only available in a restricted form.As a general reference measure we choose a translation invariant Gibbs state � withinteraction U and unit temperature, it is also a reversible measure of each partial dynamics.Introduce F�(�) := log �(e�) ; then entropy of another probability measure � relative to� is just I[�j�] := sup� f�(�)� F�(�) : � 2 C0(
)g = Z log d�d� d� (1.9)if � � � ; I[�j�] = +1 otherwise. It is easy to verify that �(�) � I[�j�] + log �(e�)whenever � : 
� 7! R is measurable and �(�) < +1 : The entropy of � in � � Rd isI�[�j�] := I[��j��] = I[���j�] = sup� f�(�)�log�(e�) : � 2 F� \ C0(Om)g (1.10)where �� is the restriction of � to F� and ��� is the measure obtained by extending ��to the whole space by means of the conditional distribution of � ; that is (���)(d!) :=�(d!�c j!�)��(d!�) : If � is translation invariant and �n denotes the centered cubic boxof side 2n then �I[�j�] := limn!1 I�n [�j�]j�nj = sup� f�(�)� F�(�) : � 2 C0(
)gF�(�) := limn!1 1j�nj log Z exp� Xm2�n\Zd sm�� d� ; (1.11)denotes the (relative) speci�c entropy of � ; see Section 5 in [OVY]. Here and alos lateron, sm is the shift by m 2 Rd ; i.e. sm�(!) � �(sm) : Observe that �I[�j�] < +1 implies�(
1) = 1 ; see e.g. [FLO]. Our main result is the following:



STATIONARY STATES 5Theorem 1. Suppose that �� is a translation invariant stationary distribution of thein�nite system (1.1) such that �I[��j�] < +1 ; then �� is a canonical Gibbs state of unittemperature with interaction U :The starting point of the argument is a nice, general entropy inequality for Markovprocesses in such situations when the initial distribution has �nite entropy relative to astationary reference measure. see [FLO]. This inequality and some of its �rst consequencesare discussed in the next section. In Section 3 we develop some uniform estimates on therate of convergence of partial dynamics to the full (in�nite) one. In Section 4 these boundsare then used when the basic entropy inequality is extended to the in�nite system, whichcompletes the proof.2. An Entropy Inequality and its ConsequencesThe idea that relative entropy with respect to a stationary measure is nice and e�ective toolof the study of ergodic properties of Markov processes goes back to A. R�enyi [Re1,Re2],where ergodicity of irreducible Markov chains in a �nite state space is shown by usingentropy as a Liapunov function to show the convergence of the evolved measure. Let us�rst review this argument in a general context of discrete time Markov processes in aprobability space (X;X ; �) ; see e.g. [Fo] for basic notions and results. Let p = p(x; dy)denote a �-a.s.de�ned transition function, it is a probability measure on X for almost eachx 2 X ; and that the operator P of conditional expectation, P'(x) := R p(x; dy)'(y) mapsL1(�) into itself. Given an initial distribution �� � ; the evolved measure at time t 2 Nis denoted as �t = �Pt ; i.e. �0 = � and �1 = �P = �P1 : We are assuming that � = �Pis a stationary measure, then I[�Pj�] � I[�j�] by convexity. Moreover, as noticed by I.Csisz�ar [Cs], the di�erence is again a relative entropy:I[�j�]� I[�tj�] = I[� � PtjQt � �t] (2.1)where � � P and Q � � are probability measures on X �X characterized by(� � P)(�) = Z �(dx)'(x)P (x) and(Q � �)(�) = Z �(dy) (y)Q'(y) (2.2)for �(x; y) = '(x) (y) with measurable and bounded ';� : X 7! R : Here q = q(y; dx) isthe transition probability of the backward process reversed with respect to � ; the associatedtransition operator, Q ; Q'(y) = R q(y; dx)'(x) ; is de�ned as the adjoint of P in L2(�) ;i.e. �('P ) = �( Q') for '; 2 L2(�) : Therefore I[�j�] = I[�Pj�] < +1 implies� � P = Q� �P ; thus � is a stationary and reversible measure of the composed, reversibleprocess R = PQ ; see [F1]. The following reformulation of results by R�enyi and Csisz�ardemostrates an intrisic relationship of the notions of entropy and reversibility.Theorem 2. Every stationary measure �� � � is reversible with respect to R : If � � �then so is �Pt ; and the sequence of densities, ft := d�Pt=d� is uniformly integrable with



6 J. FRITZ AND S. ROELLY AND H. ZESSINrespect to � : Moreover, if �Ptn(') ! ��(') for all ' 2 L1(�) as tn ! +1 then �� is areversible measure of R ; that is we have a weak convergence to the set of R-reversiblemeasures.Proof: Suppose �rst that I[�j�] < +1 ; then I[�Ptj�] � I[�j�] implies the uniformintegrability of ft ; t 2 N ; thus the Dunford{Pettis Theorem applies. We have to show thatevery weak limit point �� satis�es I[��j�] = I[��Pj�] :If ��(') = limn �Ptn(') for all ' 2 L1(�) and � : X � X 7! R is measurable andbounded, then(�� � P)(�) � log(Q � ��)(e�) = limn!1(�tn � P)(�) � log(Q � �tn+1)(e�)� limn!1�I[�tnj�]� I[�tn+1j�]� = 0 (2.3)Taking the supremum on the left hand side we get I[�� � PjQ � ��P] = 0 ; whence �� � P =Q � ��P ; i.e. �� = ��PQ : Replacing P by R in the argument above, we get �� � R = R � �� ;the condition of reversibility of �� with respect to R = PQ :The general case of �� � follows by a direct approximation procedure. For each " > 0we have some �" such that I[�"j�] < +1 and j� � �"j1 < " ; where j � j1 denotes thevariational distance. Set f"t := d�"Pt=d� and jxj+ := maxf0; xg ; since P is a contractionof L1(�) ; Z jft � aj+ d� � Z jf"t � aj+ d� + Z jft � f"t j d�� Z jf"0 � aj+ d� + Z jf0 � f"0 j d� � 2"if a is large enough, thus ft is still a uniformly integrable sequence. Consider now a weaklimit point �� of �Pt ; tn ! +1 is the subsequence along which �Pt converges to �� ; andlet ��" denote a limit point of �"Ptn : Therefore we have a subsequence ft0ng � ftng suchthat for any ' 2 L1(�)j��(') � ��"(')j = limn!1 j�Pt0n(') � �"Pt0n(')j � "j'j1so that ��� ��"j1 � " implying ��('R ) = ��( R') for '; 2 L1(�) : �This result is useful because usually it is easier to identify the reversible measures thanthe stationary ones. Of course, the set of reversible measures of R = PQ can be muchlarger than the set of stationary measures of P ; then a next, more speci�c step is needed.For example, if X is a countable set then P is given by a stochastic matrix p = p(x; y) ;and q(y; x) := �(x)p(x; y)=�(y) is the associated backward transition probability; �(x) > 0for all x 2 X may be assumed. From (2.3) with Pt in place of P we get �� � Pt = Qt � ��Ptfor any limit distribution �� ; which reads as�(x)�(x) pt(x; y) = pt(x; y) ��t(y)�(y)



STATIONARY STATES 7in the present context. Therefore if the chain is aperiodic in the sense that for each x 2 Xthere exists an integer t(x) > 0 such that pt(x; x) > 0 whenever t � t(x) ; then ��(x) = ��t(x)for t � t(x) : Similarly, ��1(x) = ��t+1(x) if t � t(x) ; consequently ��(x) = ��1(x) for allx 2 X ; i.e. �� = ��P : Uniqueness of the stationary measure follows immediately from acondition of irreducibiliy: if for each pair x; y 2 X we have some t = t(x; y) such thatpt(x; y) > 0 then ��(x)=�(x) = ��(y)=�(y) ; whence ��(x) = �(x) for all x 2 X ; consequentlywe have �t(x) ! �(x) for all x 2 X as t!1 :In the case of continuous time it is natural to assume that X is a complete and separablemetric space, and both Pt and its adjoint in L2(�) ; Qt form strongly continuous semigroupsin Cb(X) ; basic notations are the same as above. To obtain a lower bound for I[�j�] �I[�Ptj�] consider an auxiliary distribution � � � such that  := d�=d� > 0 ; then � � �and I[�j�] = I[�j�] � �(log ) ; while I[�Ptj�Pt] = I[�Ptj�] � �(logQ ) as d�Pt=d� =Qt : Since I[�Ptj�Pt] � I[�j�] by convexity,I[�j�]� I[�Ptj�] � �(log ) � �Pt(logQt )� �(log ) � �(logRt ) � Z  �Rt  d� (2.4)as logx � log y � (x � y)=x : Observe that � � Rt is a symmetric measure, thus withf = d�=d� we getZ Rt  d� = 12 ZZ (� � Rt)(dx; dy)� f(x) (y) (x) + f(y) (x) (y) �� ZZ (� � Rt)(dx; dy)pf(x)pf(y) (2.6)This means that the right hand side is maximal if  = pf :Consider now the Donsker{Varadhan rate D ;D[�jG] := sup n�Z G  d� :  2 Dom G ; inf  > 0o (2.7)where G is any semigroup generator, and notice that Dom G in the de�nition of D can bereplaced by any core of G in Cb(X) : Moreover, if G is self-adjoint in L2(�) and f = d�=d� ;then D[�jG] < +1 implies pf 2 Dom (�G)1=2 andD[�jG] = Z �p�Gpf�2 d� (2.8)see (2.6) and Theorem 5 in [DV]. Observe now that Rt is self-adjoint in L2(�) ; thus so isits generator, G ; too. By a formal calculation we get G = L+L� ; where L is the generatorof the semigroup Pt ; while its adjoint L� denotes that of Qt : For small t the right handside of (2.3) becomes approximately �t�(G = ) + o(t) ; thus we have



8 J. FRITZ AND S. ROELLY AND H. ZESSINProposition 1. Suppose that we have a dense C� � Cb(X) such that it is a common coreof L and L� with respect to either Cb(X) and L2(�) ; thenI[�Ptj�] + 2tD[��tjG] � I[�j�] ; ��t := 1t Z t0 �Ps ds :For a more detailed proof see [FLO]. Therefore if I[�j�] < +1 ; then D[�jG] = 0 ina stationary regime with I[�j�] < +1 implying the reversibility of � with respect toRt ; that is �('G ) = �( G') for all '; 2 Dom G : In the case of reversible di�usionprocesses the veri�cation of the conditions of Proposition 1 amounts to establishing smoothdependence of solutions on initial values. Assuming the smoothness of the coe�cients ofthe underlying stochastic equations, a standard argument shows that twice continuouslydi�erentiable functions with compact supports form a core of the generator. If the di�usionmatrix is positive then D[�jG] = 0 yields � = � ; thus �0Pt ! � as t!1 for all �0 � � :Our next task is to extend these results to in�nity volumes, this is done by means ofa familiar argument of Holley [Ho]; in translation invariant situations we can pass to thethermodynamic limit. This procedure can not be carried out in a general framework, seee.g. [FFL] and [FLO]; technical requirements are summarized in the next section.3. On Locality of DynamicsResults of [F2] are not directly applicable in the present situation, that is why we reviewsome parts of the argument. A convenient collection � of cuto� functions is de�ned form 2 Rd and ` � 1 by �m̀ = �m̀(x) := �0(jjx � mj � `j+) ; where �0 2 C30 (R+) satis�es0 � �0(u) � 1 8u � 0 while �0(u) = 1 if u � 1 and �0(u) = 0 if u � 2 ; thus � is the setof such functions including also � � 1 ; that is the case of full (in�nite) dynamics. Thelimiting solution will be denoted as ! = !1(t; �) : The basic a priori bound of [F2] can bereformulated as follows, see Proposition 2 and (3.18) there. Let Nk(!) denote the numberof points of ! in B(!k; 1) ; andN�(t; �) := 1 + supk2Smaxs�t Nk(!�(s))qg�(!�k(s)) : (3.1)Exploiting superstability of the interaction, by means of the argument of [F2] we getProposition 2. If � � 2� d=2 then for each t > 0 and h > 0lim�!1 sup�2� sup�2
�;h P [N�(t; �) > �] = 0 :First we derive a uniform bound on the localization of particles. From the stochasticequations j!�k(t; �) � �kj � K1 Z t0 N�(t; �)qg�(!�k(s; �)) ds+ ���Z t0 q�(!�k(s; �)) dwk��� : (3.2)



STATIONARY STATES 9Let g�(u) := (1 + juj)4=5 ; by a direct calculation��;k(t; �) := maxs�t j!�k(s; �) � �kj � ��(t; �)�g�(�k) + g�(��;k(t; �) ;��(t; �) := K2 Z t0 N�(s; �) ds + supk2Smaxs�t K2g�(�k) ���Z t0 q�(!�k(s; �)) dwk��� (3.3)whence by assuming ��;k � g�(�k) we get��;k(t; �) � ��(t; �)g�(�k) ; (3.4)where the explicit form � = K3�5 is not relevant, we only needlimy!1 sup�2� sup�2
�;h P [��(t; �) > y] = 0 (3.5)for all t; h > 0 ; which is a direct consequence of the de�nition of � :Now we are in a position to estimate the rate of convergence of partial dynamics !� toits limit ! as � ! 1 : For any initial con�guration � 2 
� let S(m; r; �) denote the set ofk 2 S such that j�k �mj � r ; and consider�m;`(t; r; �) := maxk2S(m;r;�) maxs�t j!�k(s; �) � !k(s; �)j with � = �m̀ : (3.6)For any �xed T > 0 and r0; ` � 1 de�ne r� ; � = 0; 1; :::; �; ::: byr�+1 = r� + 2g�(jmj+ `) ~�m;`(T; �) +R+ 1 ; where~�m;`(T; �) := maxf��(T; �); �1(T; �)g ; � = �m̀ : (3.7)In view of (3.4) this means that before time T the particles starting from B(m; r�) cannot interact with those starting from outside of B(m; r�+1) ; therefore�m;`(t; r�; �) � Lg(jmj+ `) eNm;`(t; �)Z t0 �m;`(s; r�+1; �) ds ; whereeNm;`(t; �) := maxfN �m̀(t; �);N 1(t; �)g ; (3.8)provided that r�+1 +R � ` :Suppose that (3.8) can � times be iterated, then for t < T�m;`(t; r0; �) � 2(`+ 1)(Lt)��! �g�(jmj+ `) eNm;`(t; �)�� (3.9)where � = O(`(jmj + `)�4=5) is a random number. Of course, this inequality implies thea.s. convergence of partial solutions; this was shown in [F2] when m = 0 and ` ! +1 :Here we need a more delicate result: !m;` converges even if jmj increases together with ` :More precisely, for any r0; t; h; " > 0 we havelimn!1 sup�;m�P [ eNm;`(t; �)�m;`(t; r0; �) > "] : � 2 
�;h ; m; ` 2 Mn	= 0 ; (3.10)where Mn := fm; ` : jmj+ `+R < n ; ` > n5=6g : Indeed, in this situation � of (3.9) goesa.s. to +1 as n!1 :In the next section the following consequence of (3.10) will be needed. Suppose thatwe are given a translation invariant probability measure � such that �(
�) = 1 ; and set�̂n := ��n� : The above calculations are summarized in



10 J. FRITZ AND S. ROELLY AND H. ZESSINLemma 1. For any � 2 C10 (
) and t > 0 we havelimn!1 sups;m�j�̂nPssm�� �Ps�j : s � t ; jmj < n� n5=6	 = 0 :Proof: Since �̂n(sm') = �(') if '; sm' 2 F�n ; it is natural to set '` = Ps�0̀� ; thensm'` = Ps�m̀� : Since � is Lipschitz continuous by assumption, we can compare sm'` andPssm� via (3.10), at least if jmj < n� n5=6 : The missing part of the bound,limh!1 supn2N ; �̂n(
�;h) = 0 (3.11)follows from the basic superstability estimate of Ruelle [Ru2]. Indeed, for any box � ofgiven shape and size we have �[!(�) > �jF�c] � Ce�c�2 ; where c and C do not depend on!�c : In view of (1.2) this yields �(
�) = 1 by the Borel-Cantelli lemma. Since �(
�) = 1by assumption, estimating the contribution of particles from �cn to H� via superstability,we get (3.11) by a similar computation. �Remark: Since the level sets of H are compact, the Stone-Weierstrass theorem allows usto extend Lemma 1 to continuous and bounded local functions.4. Passage to the Thermodynamic LimitNow we are in a position to prove Theorem 1 by extending Proposition 1 to in�nite volumes.Using the notation �̂�n = ���n� of Lemma 1, we haveI[�̂�nPt�j�] + 2tD[���n;�;tjL�] � I[�̂�nj�] = I�n [��j�] (4.1)for any smooth cuto� � ; where ���n;�;t is the time average of the evolved measures �̂�nPs�from s = 0 through s = t : In view of (2.6) D is subadditive in the following sense. Supposethat J�̀(n) �Zd satis�es � � �m̀ and �m̀�k̀ = 0 for m;k 2 J�̀(n) ; k 6=m thenD[���n;�;tjL�] � Xm2J�̀(n)D[���n;�;tjL�m̀ ] � Xm2J�̀(n)Z �L�m̀sm sm d���n;�;t (4.2)for smooth  > 0 : Similarly, for all ' 2 C0(
)I[�̂�nPt�j�] � Z Sn�Pt�(')� d�̂�n � F��Sn(')� ; withSn(') := Xm2�n\Zd sm' (4.3)Now we can remove the cuto� of dynamics, keeping J�̀(n) = J`(n) � �n�n5=6 �xedduring this procedure we getXm2J`(n)Z t0 dsZ �L�m̀sm sm d�̂�nPs � I[�̂�nj�] + F��Sn(')�� Z Sn(Pt') d�̂�n (4.4)



STATIONARY STATES 11As far as ` is �xed, we may assume that Card J`(n) � c`j�nj with some c` > 0 ; thusdividing both sides by j�nj we can pass to a thermodynamic limit. Indeed, in view ofLemma 1 all terms of �̂�nPt�Sn(')� become asymptotically identical when n !1 : SinceL�m̀ = smL�0̀ ; the same holds true on the left hand side, thus for all � 2 � with compactsupport we have some c� > 0 such thatc�tZ �L�  d�� � �I[��j�] + �F�(')� ��(') ; (4.6)where ' 2 C0(
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2 J. FRITZ AND S. ROELLY AND H. ZESSIN1. IntroductionThe main purpose of this paper is to identify a class of stationary states of the followingsystem of interacting particles as the set of translation invariant canonical Gibbs states withinteraction U : The evolution law is given by an in�nite system of stochastic di�erentialequations, d!k = �12Xj 6=k grad U(!k � !j) dt+ dwk ; !k(0) = �k ; k 2 S (1.1)where S is a countable index set, w = (wk)k2S is a family of independent standard d-dimensional Wiener processes, and each !k = !k(t) ; t � 0 is assumed to be a continuoustrajectory in Rd : The potential U : Rd 7! R is symmetric and superstable with �nite range,that is U(x) = U(�x) ; there is an R > 0 such that U(x) = 0 if jxj > R ; and we haveconstants A � 0 ; B > 0 such that for any �nite sequence q1; q2; :::; qn of not necessarilydistinct points from Rd nA+ nXk=1Xj 6=kU(qk � qj ) � BN (1.2)where N is the number of pairs fj; kg such that jqk � qj j � R ; see [Ru1]. Let 
 denotethe set of con�gurations having no limit points. Although the right hand side of (1.1) iscertainly well de�ned for such, locally �nite con�gurations ! 2 
 ; to develop a satisfactoryexistence theory we have to restrict the con�guration space in a much more radical way.On the other hand, the set of allowed con�gurations should be large enough to support apossibly wide set probability measures including Gibbs states with various interactions.The �rst mathematical results concerning this model go back to R. Lang, see [La1] and[La2], where the existence of equilibrium dynamics, and also the canonical Gibbs propertyof reversible measures is proven. These dynamics is de�ned almost surely with respect toa Gibbs state with interaction U ; see also the more sophisticated argument of [Os]. Fora study of stationary measures in general, we need a more direct construction involvingexplicit bounds on the rate of convergence of solutions to �nite subsystems (partial dynam-ics) when the number of active particles tends to in�nity, see Section 3 below. Indeed, theproblem of stationary measures can not be solved at a formal level of the stationary Kol-mogorov equation, see [FFL] and [FLO], we really need that that our measure is realizedas a stationary state of a well controlled Markov process.For a generic, locally �nite con�guration ! = (!k)k2S let H(!;m; r) denote total energyin the ball B(m; r) of center m 2 Rd and radius r � 1 ; and for � � 0 de�neH�(!) : = supm2Zd supr2N H�!;m; rg1=d� (m)�rdg�(m) whereH(!;m; r) := 12 X!k2B(m;r) Xj 6=k;!j2B(m;r) U(!j � !k)g�(u) := 1 + juj� log(1 + juj) for u 2 R;Rd : (1.3)



STATIONARY STATES 3The set of allowed con�gurations is now speci�ed as 
� := f! 2 
 : H�(!) < +1g ;we shall see that for an e�ective a priori bound we need � � 2 � d=2 ; thus d � 4 : LetC0(Rd) denote the space of continuous ' : Rd 7! R of compact support. Spaces of k timescontinuously di�erentiable functions with compact supports are marked by a superscript k ;while a subscript b in place of 0 refers to bounded functions without any support condition.For an open and bounded domain � � Rd the �-�eld F� is generated by the variables!(') :=Pk2S '(!k) such that the support of ' 2 C0(Rd) is contained in � ; the numberof points in � will be denoted by !(�) : This means that con�gurations are interpretedas nonnegative, integer valued measures, and 
� is equipped with the associated weaktopology and Borel structure. Observe that, due to superstability (1.2), the level sets
�;h := [H�(!) � h] are compact if h is large enough. The restriction of ! 2 
� to � is!� ; and �c denotes the complement of � :For any bounded domain � � Rd and � 2 
� ; n 2 N let ��(nj�) denote the set of ! 2
� such that !(�) = n and !�c = ��c : A probability measure � is a canonical Gibbs state(with unit temperature) for U if its conditional distribution �[d!�j!�c ; !(�) =n] ; giventhe con�guration outside of � and the number of points in � ; admits an nd-dimensionalLebesgue density f�;n ;f�;n(!�j!�c ) : = exp��H�;n(!�j!�c )�Z�;n(!�c ) if ! 2 ��(nj!�c) ;H�;n(!�j!�c ) : = 12 X!k2� X!j2�U(!k � !j) + X!k2� X!j2�c U(!k � !j) (1.4)where �� denotes the summation for such pairs fj; kg that at least one of !j and !kbelongs to � ; Z is the canonical partition function (normalization). Gibbs states are theextremal canonical measures, see e.g. [G]. In view of the superstability estimates of [R2],there exits at least one translation invariant Gibbs state � such that �(
0) = 1 ; of course
� � 
� if � > � :The unique strong solution ! = !(t; �) to the in�nite system (1.1) with initial con-�guration � 2 
� is constructed as the a.s limit of partial solutions !� = !�(t; �) whena spatial cuto� � is removed. To ensure the convergence of partial dynamics we have toassume that � � 2� d=2 : Like in [F2], partial dynamics also preserve any canonical Gibbsmeasure because we keep particles within a bounded domain, while external particles arefrozen. More precisely, for any � 2 C10(Rd) such that 0 � � � 1 there is a di�erentialoperator L� ; L�� := 12 Xk2S dXi=1 eHk(!)@k;i��(!k)e�Hk(!)@k;i�(!)� (1.5)where @k;i denotes di�erentiation with respect to the i coordinate of !k andHk(!) :=Xj 6=kU(!j � !k) : (1.6)We consider L� as the (formal) generator of partial dynamics with cuto� � ; the in�nitesystem (1.1) corresponds to � � 1 : All generators of this kind are certainly well de�ned



4 J. FRITZ AND S. ROELLY AND H. ZESSINon C20 (
) ; where Ck0 (
) is the space of test functions�(!) =  �!('1); !('2); :::; !('`)� ;  2 Ckb (R`) ; 'j 2 Ck0 (Rd) ; ` 2 N (1.7)The stochastic equations for cuto� � read asd!k = 12 eHk@k��(!k)e�Hk� dt+p�(!k) dwk ; (1.8)they have a unique strong solution !� = !�(t; �) for each initial con�guration � : If � �supp � then the particle number in � is a constant of motion, that is !�(t; �)(�) � �(�) :Therefore (1.8) de�nes a fairly regular di�usion in each ��(nj�) ; and it is easy to verifythat the realizations of the canonical conditional distribution �[d!�j!�c ; !(�)=n] are allreversible measures of the associated (nd-dimensional) di�usion process for every n 2 Nand external con�guration !�c = ��c : The associated Markov semigroup will be denotedas Pt� ; it is strongly continuous in C(
�) and also in L2(
�; �) whenever � is a canonicalGibbs state.In the paper [F2] it is shown that for every initial con�guration � 2 
0 a sequenceof partial solutions !�(t; �) converges almost surely to a strong solution ! � !1(t; �) of(1.1) as � ! 1 : This limiting solution is distinguished by an a priori bound: H0(!(t; �)is bounded on �nite intervals of time, and there is no other solution having this property.Following the lines of the proof we see that the result extends immediately to all � �2 � d=2 ; see Proposition 1 in Section 3. The limiting semigroup, Pt is less regular thanpartial dynamics, the Hille-Yoshida theory is only available in a restricted form.As a general reference measure we choose a translation invariant Gibbs state � withinteraction U and unit temperature, it is also a reversible measure of each partial dynamics.Introduce F�(�) := log �(e�) ; then entropy of another probability measure � relative to� is just I[�j�] := sup� f�(�)� F�(�) : � 2 C0(
)g = Z log d�d� d� (1.9)if � � � ; I[�j�] = +1 otherwise. It is easy to verify that �(�) � I[�j�] + log �(e�)whenever � : 
� 7! R is measurable and �(�) < +1 : The entropy of � in � � Rd isI�[�j�] := I[��j��] = I[���j�] = sup� f�(�)�log�(e�) : � 2 F� \ C0(Om)g (1.10)where �� is the restriction of � to F� and ��� is the measure obtained by extending ��to the whole space by means of the conditional distribution of � ; that is (���)(d!) :=�(d!�c j!�)��(d!�) : If � is translation invariant and �n denotes the centered cubic boxof side 2n then �I[�j�] := limn!1 I�n [�j�]j�nj = sup� f�(�)� F�(�) : � 2 C0(
)gF�(�) := limn!1 1j�nj log Z exp� Xm2�n\Zd sm�� d� ; (1.11)denotes the (relative) speci�c entropy of � ; see Section 5 in [OVY]. Here and alos lateron, sm is the shift by m 2 Rd ; i.e. sm�(!) � �(sm) : Observe that �I[�j�] < +1 implies�(
1) = 1 ; see e.g. [FLO]. Our main result is the following:



STATIONARY STATES 5Theorem 1. Suppose that �� is a translation invariant stationary distribution of thein�nite system (1.1) such that �I[��j�] < +1 ; then �� is a canonical Gibbs state of unittemperature with interaction U :The starting point of the argument is a nice, general entropy inequality for Markovprocesses in such situations when the initial distribution has �nite entropy relative to astationary reference measure. see [FLO]. This inequality and some of its �rst consequencesare discussed in the next section. In Section 3 we develop some uniform estimates on therate of convergence of partial dynamics to the full (in�nite) one. In Section 4 these boundsare then used when the basic entropy inequality is extended to the in�nite system, whichcompletes the proof.2. An Entropy Inequality and its ConsequencesThe idea that relative entropy with respect to a stationary measure is nice and e�ective toolof the study of ergodic properties of Markov processes goes back to A. R�enyi [Re1,Re2],where ergodicity of irreducible Markov chains in a �nite state space is shown by usingentropy as a Liapunov function to show the convergence of the evolved measure. Let us�rst review this argument in a general context of discrete time Markov processes in aprobability space (X;X ; �) ; see e.g. [Fo] for basic notions and results. Let p = p(x; dy)denote a �-a.s.de�ned transition function, it is a probability measure on X for almost eachx 2 X ; and that the operator P of conditional expectation, P'(x) := R p(x; dy)'(y) mapsL1(�) into itself. Given an initial distribution �� � ; the evolved measure at time t 2 Nis denoted as �t = �Pt ; i.e. �0 = � and �1 = �P = �P1 : We are assuming that � = �Pis a stationary measure, then I[�Pj�] � I[�j�] by convexity. Moreover, as noticed by I.Csisz�ar [Cs], the di�erence is again a relative entropy:I[�j�]� I[�tj�] = I[� � PtjQt � �t] (2.1)where � � P and Q � � are probability measures on X �X characterized by(� � P)(�) = Z �(dx)'(x)P (x) and(Q � �)(�) = Z �(dy) (y)Q'(y) (2.2)for �(x; y) = '(x) (y) with measurable and bounded ';� : X 7! R : Here q = q(y; dx) isthe transition probability of the backward process reversed with respect to � ; the associatedtransition operator, Q ; Q'(y) = R q(y; dx)'(x) ; is de�ned as the adjoint of P in L2(�) ;i.e. �('P ) = �( Q') for '; 2 L2(�) : Therefore I[�j�] = I[�Pj�] < +1 implies� � P = Q� �P ; thus � is a stationary and reversible measure of the composed, reversibleprocess R = PQ ; see [F1]. The following reformulation of results by R�enyi and Csisz�ardemostrates an intrisic relationship of the notions of entropy and reversibility.Theorem 2. Every stationary measure �� � � is reversible with respect to R : If � � �then so is �Pt ; and the sequence of densities, ft := d�Pt=d� is uniformly integrable with



6 J. FRITZ AND S. ROELLY AND H. ZESSINrespect to � : Moreover, if �Ptn(') ! ��(') for all ' 2 L1(�) as tn ! +1 then �� is areversible measure of R ; that is we have a weak convergence to the set of R-reversiblemeasures.Proof: Suppose �rst that I[�j�] < +1 ; then I[�Ptj�] � I[�j�] implies the uniformintegrability of ft ; t 2 N ; thus the Dunford{Pettis Theorem applies. We have to show thatevery weak limit point �� satis�es I[��j�] = I[��Pj�] :If ��(') = limn �Ptn(') for all ' 2 L1(�) and � : X � X 7! R is measurable andbounded, then(�� � P)(�) � log(Q � ��)(e�) = limn!1(�tn � P)(�) � log(Q � �tn+1)(e�)� limn!1�I[�tnj�]� I[�tn+1j�]� = 0 (2.3)Taking the supremum on the left hand side we get I[�� � PjQ � ��P] = 0 ; whence �� � P =Q � ��P ; i.e. �� = ��PQ : Replacing P by R in the argument above, we get �� � R = R � �� ;the condition of reversibility of �� with respect to R = PQ :The general case of �� � follows by a direct approximation procedure. For each " > 0we have some �" such that I[�"j�] < +1 and j� � �"j1 < " ; where j � j1 denotes thevariational distance. Set f"t := d�"Pt=d� and jxj+ := maxf0; xg ; since P is a contractionof L1(�) ; Z jft � aj+ d� � Z jf"t � aj+ d� + Z jft � f"t j d�� Z jf"0 � aj+ d� + Z jf0 � f"0 j d� � 2"if a is large enough, thus ft is still a uniformly integrable sequence. Consider now a weaklimit point �� of �Pt ; tn ! +1 is the subsequence along which �Pt converges to �� ; andlet ��" denote a limit point of �"Ptn : Therefore we have a subsequence ft0ng � ftng suchthat for any ' 2 L1(�)j��(') � ��"(')j = limn!1 j�Pt0n(') � �"Pt0n(')j � "j'j1so that ��� ��"j1 � " implying ��('R ) = ��( R') for '; 2 L1(�) : �This result is useful because usually it is easier to identify the reversible measures thanthe stationary ones. Of course, the set of reversible measures of R = PQ can be muchlarger than the set of stationary measures of P ; then a next, more speci�c step is needed.For example, if X is a countable set then P is given by a stochastic matrix p = p(x; y) ;and q(y; x) := �(x)p(x; y)=�(y) is the associated backward transition probability; �(x) > 0for all x 2 X may be assumed. From (2.3) with Pt in place of P we get �� � Pt = Qt � ��Ptfor any limit distribution �� ; which reads as�(x)�(x) pt(x; y) = pt(x; y) ��t(y)�(y)



STATIONARY STATES 7in the present context. Therefore if the chain is aperiodic in the sense that for each x 2 Xthere exists an integer t(x) > 0 such that pt(x; x) > 0 whenever t � t(x) ; then ��(x) = ��t(x)for t � t(x) : Similarly, ��1(x) = ��t+1(x) if t � t(x) ; consequently ��(x) = ��1(x) for allx 2 X ; i.e. �� = ��P : Uniqueness of the stationary measure follows immediately from acondition of irreducibiliy: if for each pair x; y 2 X we have some t = t(x; y) such thatpt(x; y) > 0 then ��(x)=�(x) = ��(y)=�(y) ; whence ��(x) = �(x) for all x 2 X ; consequentlywe have �t(x) ! �(x) for all x 2 X as t!1 :In the case of continuous time it is natural to assume that X is a complete and separablemetric space, and both Pt and its adjoint in L2(�) ; Qt form strongly continuous semigroupsin Cb(X) ; basic notations are the same as above. To obtain a lower bound for I[�j�] �I[�Ptj�] consider an auxiliary distribution � � � such that  := d�=d� > 0 ; then � � �and I[�j�] = I[�j�] � �(log ) ; while I[�Ptj�Pt] = I[�Ptj�] � �(logQ ) as d�Pt=d� =Qt : Since I[�Ptj�Pt] � I[�j�] by convexity,I[�j�]� I[�Ptj�] � �(log ) � �Pt(logQt )� �(log ) � �(logRt ) � Z  �Rt  d� (2.4)as logx � log y � (x � y)=x : Observe that � � Rt is a symmetric measure, thus withf = d�=d� we getZ Rt  d� = 12 ZZ (� � Rt)(dx; dy)� f(x) (y) (x) + f(y) (x) (y) �� ZZ (� � Rt)(dx; dy)pf(x)pf(y) (2.6)This means that the right hand side is maximal if  = pf :Consider now the Donsker{Varadhan rate D ;D[�jG] := sup n�Z G  d� :  2 Dom G ; inf  > 0o (2.7)where G is any semigroup generator, and notice that Dom G in the de�nition of D can bereplaced by any core of G in Cb(X) : Moreover, if G is self-adjoint in L2(�) and f = d�=d� ;then D[�jG] < +1 implies pf 2 Dom (�G)1=2 andD[�jG] = Z �p�Gpf�2 d� (2.8)see (2.6) and Theorem 5 in [DV]. Observe now that Rt is self-adjoint in L2(�) ; thus so isits generator, G ; too. By a formal calculation we get G = L+L� ; where L is the generatorof the semigroup Pt ; while its adjoint L� denotes that of Qt : For small t the right handside of (2.3) becomes approximately �t�(G = ) + o(t) ; thus we have



8 J. FRITZ AND S. ROELLY AND H. ZESSINProposition 1. Suppose that we have a dense C� � Cb(X) such that it is a common coreof L and L� with respect to either Cb(X) and L2(�) ; thenI[�Ptj�] + 2tD[��tjG] � I[�j�] ; ��t := 1t Z t0 �Ps ds :For a more detailed proof see [FLO]. Therefore if I[�j�] < +1 ; then D[�jG] = 0 ina stationary regime with I[�j�] < +1 implying the reversibility of � with respect toRt ; that is �('G ) = �( G') for all '; 2 Dom G : In the case of reversible di�usionprocesses the veri�cation of the conditions of Proposition 1 amounts to establishing smoothdependence of solutions on initial values. Assuming the smoothness of the coe�cients ofthe underlying stochastic equations, a standard argument shows that twice continuouslydi�erentiable functions with compact supports form a core of the generator. If the di�usionmatrix is positive then D[�jG] = 0 yields � = � ; thus �0Pt ! � as t!1 for all �0 � � :Our next task is to extend these results to in�nity volumes, this is done by means ofa familiar argument of Holley [Ho]; in translation invariant situations we can pass to thethermodynamic limit. This procedure can not be carried out in a general framework, seee.g. [FFL] and [FLO]; technical requirements are summarized in the next section.3. On Locality of DynamicsResults of [F2] are not directly applicable in the present situation, that is why we reviewsome parts of the argument. A convenient collection � of cuto� functions is de�ned form 2 Rd and ` � 1 by �m̀ = �m̀(x) := �0(jjx � mj � `j+) ; where �0 2 C30 (R+) satis�es0 � �0(u) � 1 8u � 0 while �0(u) = 1 if u � 1 and �0(u) = 0 if u � 2 ; thus � is the setof such functions including also � � 1 ; that is the case of full (in�nite) dynamics. Thelimiting solution will be denoted as ! = !1(t; �) : The basic a priori bound of [F2] can bereformulated as follows, see Proposition 2 and (3.18) there. Let Nk(!) denote the numberof points of ! in B(!k; 1) ; andN�(t; �) := 1 + supk2Smaxs�t Nk(!�(s))qg�(!�k(s)) : (3.1)Exploiting superstability of the interaction, by means of the argument of [F2] we getProposition 2. If � � 2� d=2 then for each t > 0 and h > 0lim�!1 sup�2� sup�2
�;h P [N�(t; �) > �] = 0 :First we derive a uniform bound on the localization of particles. From the stochasticequations j!�k(t; �) � �kj � K1 Z t0 N�(t; �)qg�(!�k(s; �)) ds+ ���Z t0 q�(!�k(s; �)) dwk��� : (3.2)



STATIONARY STATES 9Let g�(u) := (1 + juj)4=5 ; by a direct calculation��;k(t; �) := maxs�t j!�k(s; �) � �kj � ��(t; �)�g�(�k) + g�(��;k(t; �) ;��(t; �) := K2 Z t0 N�(s; �) ds + supk2Smaxs�t K2g�(�k) ���Z t0 q�(!�k(s; �)) dwk��� (3.3)whence by assuming ��;k � g�(�k) we get��;k(t; �) � ��(t; �)g�(�k) ; (3.4)where the explicit form � = K3�5 is not relevant, we only needlimy!1 sup�2� sup�2
�;h P [��(t; �) > y] = 0 (3.5)for all t; h > 0 ; which is a direct consequence of the de�nition of � :Now we are in a position to estimate the rate of convergence of partial dynamics !� toits limit ! as � ! 1 : For any initial con�guration � 2 
� let S(m; r; �) denote the set ofk 2 S such that j�k �mj � r ; and consider�m;`(t; r; �) := maxk2S(m;r;�) maxs�t j!�k(s; �) � !k(s; �)j with � = �m̀ : (3.6)For any �xed T > 0 and r0; ` � 1 de�ne r� ; � = 0; 1; :::; �; ::: byr�+1 = r� + 2g�(jmj+ `) ~�m;`(T; �) +R+ 1 ; where~�m;`(T; �) := maxf��(T; �); �1(T; �)g ; � = �m̀ : (3.7)In view of (3.4) this means that before time T the particles starting from B(m; r�) cannot interact with those starting from outside of B(m; r�+1) ; therefore�m;`(t; r�; �) � Lg(jmj+ `) eNm;`(t; �)Z t0 �m;`(s; r�+1; �) ds ; whereeNm;`(t; �) := maxfN �m̀(t; �);N 1(t; �)g ; (3.8)provided that r�+1 +R � ` :Suppose that (3.8) can � times be iterated, then for t < T�m;`(t; r0; �) � 2(`+ 1)(Lt)��! �g�(jmj+ `) eNm;`(t; �)�� (3.9)where � = O(`(jmj + `)�4=5) is a random number. Of course, this inequality implies thea.s. convergence of partial solutions; this was shown in [F2] when m = 0 and ` ! +1 :Here we need a more delicate result: !m;` converges even if jmj increases together with ` :More precisely, for any r0; t; h; " > 0 we havelimn!1 sup�;m�P [ eNm;`(t; �)�m;`(t; r0; �) > "] : � 2 
�;h ; m; ` 2 Mn	= 0 ; (3.10)where Mn := fm; ` : jmj+ `+R < n ; ` > n5=6g : Indeed, in this situation � of (3.9) goesa.s. to +1 as n!1 :In the next section the following consequence of (3.10) will be needed. Suppose thatwe are given a translation invariant probability measure � such that �(
�) = 1 ; and set�̂n := ��n� : The above calculations are summarized in



10 J. FRITZ AND S. ROELLY AND H. ZESSINLemma 1. For any � 2 C10 (
) and t > 0 we havelimn!1 sups;m�j�̂nPssm�� �Ps�j : s � t ; jmj < n� n5=6	 = 0 :Proof: Since �̂n(sm') = �(') if '; sm' 2 F�n ; it is natural to set '` = Ps�0̀� ; thensm'` = Ps�m̀� : Since � is Lipschitz continuous by assumption, we can compare sm'` andPssm� via (3.10), at least if jmj < n� n5=6 : The missing part of the bound,limh!1 supn2N ; �̂n(
�;h) = 0 (3.11)follows from the basic superstability estimate of Ruelle [Ru2]. Indeed, for any box � ofgiven shape and size we have �[!(�) > �jF�c] � Ce�c�2 ; where c and C do not depend on!�c : In view of (1.2) this yields �(
�) = 1 by the Borel-Cantelli lemma. Since �(
�) = 1by assumption, estimating the contribution of particles from �cn to H� via superstability,we get (3.11) by a similar computation. �Remark: Since the level sets of H are compact, the Stone-Weierstrass theorem allows usto extend Lemma 1 to continuous and bounded local functions.4. Passage to the Thermodynamic LimitNow we are in a position to prove Theorem 1 by extending Proposition 1 to in�nite volumes.Using the notation �̂�n = ���n� of Lemma 1, we haveI[�̂�nPt�j�] + 2tD[���n;�;tjL�] � I[�̂�nj�] = I�n [��j�] (4.1)for any smooth cuto� � ; where ���n;�;t is the time average of the evolved measures �̂�nPs�from s = 0 through s = t : In view of (2.6) D is subadditive in the following sense. Supposethat J�̀(n) �Zd satis�es � � �m̀ and �m̀�k̀ = 0 for m;k 2 J�̀(n) ; k 6=m thenD[���n;�;tjL�] � Xm2J�̀(n)D[���n;�;tjL�m̀ ] � Xm2J�̀(n)Z �L�m̀sm sm d���n;�;t (4.2)for smooth  > 0 : Similarly, for all ' 2 C0(
)I[�̂�nPt�j�] � Z Sn�Pt�(')� d�̂�n � F��Sn(')� ; withSn(') := Xm2�n\Zd sm' (4.3)Now we can remove the cuto� of dynamics, keeping J�̀(n) = J`(n) � �n�n5=6 �xedduring this procedure we getXm2J`(n)Z t0 dsZ �L�m̀sm sm d�̂�nPs � I[�̂�nj�] + F��Sn(')�� Z Sn(Pt') d�̂�n (4.4)
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