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0 IntrodutionWe onsider a system of in�nitely many indistingable hard balls with diameter r > 0 ina d-dimensional Eulidean spae Rd , d>2, undergoing Brownian motions and submittedto the inuene of a smooth in�nite range pair potential �s.In�nite systems of interating Brownian partiles (i.e. balls with diameter reduedto 0) have been treated by Lang [Lan77a, Lan77b℄ and Fritz [Fri87℄ in the ase of asmooth nonnegative pair potential with �nite range. Tanemura [Tan96℄ studied thease of Brownian hard balls without supplementary pair potential. Reently, Fradonand Roelly [FR℄ analyzed an in�nite system of hard balls submitted to a smooth �niterange pair potential under the assumption that the density of balls is suÆiently small.Here, we present a generalization of the previous works with respet to two importantpoints : the spatial mean density of the initial on�guration is arbitrary large (whenit is Gibbsian, this means that there is no restrition on the ativity), and the ballsinterat even if they are separated by any large distane (the potential �s has in�niterange with exponential derease). Under these assumptions, we onstrut the gradientdi�usion X(t) = (Xi(t); i 2 N ; t > 0), unique strong solution of the following in�nite-dimensional Skorohod type system of equations :Xi(t) = Xi +Bi(t)� 12Xj2N Z t0 r�s(Xi(s)�Xj(s))ds+Xj2N Z t0 (Xi(s)�Xj(s))dLij(s);where, for any i; j 2 N ; i 6= j; t>0; jXi(t)�Xj(t)j>r, and Lij(t) are loal times, thatis nondereasing ontinuous proesses withLij(0) = 0; Lij(:) = Lji(:) and Lij(t) = Z t0 1Ifrg(jXi(s)�Xj(s)j)dLij(s):In a �rst setion we de�ne state spaes and present the main results of the paper. Inthe seond setion the �nite dimensional Skohorod problem is stated, some geometrialaspet of the on�guration spae is disussed, and the dynamis of �nitely many hardballs is solved. The third setion is devoted to the onvergene of �nite-dimensionalapproximations towards X(:), a reversible solution of the above equation. In the lastsetion, we prove some measurability properties of the di�usion X(:) and the existeneof solutions with deterministi initial onditions.1 Statement of the results1.1 Con�guration spaes and path spaesIn the whole paper, j:j denotes the eulidean norm and h�; �i denotes the orrespondingsalar produt.LetM be the set of all ountable subsets � = f�igi of Rd satisfying N�(�) � ℄(�\�) <+1 for any ompat set � of Rd . We equivalently onsider � 2 M as a non-negativeinteger valued Radon measure on Rd : � =Pi Æ�i : M is endowed with the topology ofvague onvergene. 2



The partiles we deal with in the present paper are hard balls of radius r=2 (for a�xed r > 0) evolving in Rd . So the on�guration spae of the system is the following(ompat) subset of M :X = f� = f�igi2J 2M where J � N and for i 6= j; j�i � �jj>rg;where �i are the positions of the enters of the hard balls.Throughout this paper when S is a topologial spae, we denote by B(S) the topo-logial Borel �eld of S, and by W (S) the set of all S-valued ontinuous funtionsde�ned on [0;1). W (S) is endowed with the loal uniform topology.The �-�eld �(NA;A 2 B(Rd)) oinides with B(X). We will also use the �-�eldB�(X) de�ned for eah ompat subset � of Rd byB�(X) = �(NA;A 2 B(Rd); A � �):We introdue the following measurable subsets of W (X).For " > 0, 06s < t <1 and a bounded open subset O of Rd , we denote by C("; [s; t℄; O)the set of all paths x(�) of W (X) suh that on the time interval [s; t℄ the balls stay atdistane greater than "=2 from the boundary of O :if j 2 J(x(s); O); 8u 2 [s; t℄; U r+"2 (xj(u)) � Oif j =2 J(x(s); O); 8u 2 [s; t℄; U r+"2 (xj(u)) � Rd nO:Here J(� = f�igi; O) = fi 2 N : �i 2 Ogand, for � > 0; U�(A) denotes the open �-neighbourhood of a set A � Rd . U�(x) is theabbreviated form of U�(fxg), and, for simpliity, we just write U� instead of U�(f0g).So, U� = fx 2 Rd ; jxj < �g:For "; Æ > 0, T;M 2 N and ` 2 N, we denote by C["; Æ; T;M; `℄ the set of all paths x(�)of W (X) suh that for any k = 0; 1; : : : ; [TÆ ℄, there exists a sequene O1k; O2k; : : : OQk ofbounded open disjoint subsets of Rd verifying(1:1) 8q 2 f1; 2; : : : ; Qg x(�) 2 C("; [kÆ; (k + 1)Æ℄; Oqk);(1:2) SQq=1 J(x(kÆ); Oqk) � J(x(kÆ); U`);(1:3) 8q 2 f1; 2; : : : ; Qg 1 6 ℄J(x(kÆ); Oqk) 6 M:We now de�ne a measurable subset C ofW (X) whih will be a path spae ontainingthe proesses studied in this paper :(1:4) C = [�2(0; 12 ) 1\p=1 1[M=1 1\T=1 1\m0=1 1[m=m0 C(m��; 1m; T;M;mp):3



1.2 Desription of the potential and assoiated Gibbs statesWe are dealing with a pair potential � = �h + �s, where �h represents a hard orerepulsion, i.e.(1:5) �h(�i; �j) = (0 if j�i � �jj>r;+1 otherwise,and �s(�i; �j) = �s(�i � �j) is an R-valued C1-pair potential on Rd satisfying thefollowing assumptions (1.6), (1.7) and (1.8):� Summability on X of the funtions �s and r�s :(1:6) 8f�jgj 2 X; 8i; Xj 6=i j�s(�i � �j)j <+1 and Xj 6=i jr�s(�i � �j)j <+1� Lipshitzianity of r�s on �nite allowed on�gurations :There exists K suh that for eah �nite subset J of N , eah �; � 2 X and eahi 2 N verifying maxj2J; j 6=i j(�i � �j)� (�i � �j)j < r=2, one has :(1:7) Xj2J; j 6=ijr�s(�i � �j)�r�s(�i � �j)j 6 K maxj2J; j 6=i j(�i � �j)� (�i � �j)j� Strethed exponential derease on X of the sum of r�s :(1:8) 9�0; �1; �2 > 0; suh that for R large enough, 8� 2 X; 8iXj;j�i��j j>R jr�s(�i � �j)j � g(R) � �0 exp(��1R�2)The range of the smooth pair potential �s may be �nite or in�nite, i.e. the supportof �s may be ompat or not. If the range of �s is �nite, the funtion g appearing in(1.8) vanishes.Remark 1.1 By an elementary omparison argument with the summability on thelattie rZd, inequalities (1.6) on �s and r�s are equivalent to the following uniformsummability on X :(1:9) �s = sup�2X supi2N Xj 6=i j�s(�i � �j)j < +1 and r�s = sup�2X supi2N Xj 6=i jr�s(�i � �j)j < +1A suÆient ondition for (1.6) and (1.7) to hold is that �s has C2-regularity and :(1:10) Xk2Zdj�s(rk)j <+1;Xk2Zdjr�s(rk)j <+1 and Xk2Zd supx2[0;r℄d jD2�s(rk + x)j <+1:
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Remark 1.2 Let us suppose that the in�nite range pair potential �s(x); x 2 Rd ; is afuntion of the norm of x, in suh a way that there exists a funtion ' on R+ verify-ing �s(x) = '(jxj). Suh assumption is physially very natural. Then, the followingregularity of the funtion ' is suÆient to imply (1.6) and (1.7) :' is C2; j'j; j'0j and j'00j are non inreasing funtions on some interval [R;+1[ andZ[R;+1[ j'(u)jud�1du < +1:To obtain the exponential bound (1.8), it is enough to suppose the following exponentialdereasing property of '0 :9R; 0; 1; 2 > 0; 8u > R; j'0(u)j � 0 exp(�1u2):Now, we an de�ne the set of Gibbs states assoiated to the pair potential� = �h + �s. For � = f�1; �2; : : : ; �ng and � 2M we de�ne�(�j�) = expf� X16i<j6n�(�i; �j)� nXi=1 Xj �(�i; �j)g:By assumption (1.6) the seond (in�nite) summation on �j is bounded and then, thefuntion � is well de�ned.Let us �x a real positive number z. For any ompat subset � � Rd , we denote by ��;zthe Poisson distribution on M(�) with intensity measure zdx on �, where dx denotesthe Lebesgue measure, and M(�) is the set of all �nite subsets of �.De�nition 1.3 A probability measure � on X is alled a Gibbs state with respet tothe ativity z>0 and the potential �, if � satis�es the following DLR equation for anyompat subset � of Rd :�(�jB�(X))(�) = ��;�;z(�); � �-a.s.;where ��;�;z is the probability measure on M(�) de�ned by(1:11) ��;�;z(d�) = 1Z�;�;z�(�j� \ �)��;z(d�);and Z�;�;z = ZM(�) �(�j� \ �)��;z(d�):The set of suh Gibbs states is denoted by G(z;�).The set G(z;�) is onvex and ompat with respet to the topology of weak on-vergene. Sine �s, the smooth part of the potential, satis�es the ondition (1.6) andthen the ondition (1.9), it is a stable potential in the sense of Ruelle with stabilityonstant �s and then � is superstable (See [Rue69℄ x3.2.5). This assures the existeneof at least one element in G(z;�), i.e.G(z;�) 6= ;: 5



About the ardinality of G(z;�), we do the following remarks:- if z is smaller than a ritial value z, Ruelle proved that uniqueness holds (See[Rue69℄ Theorem 4.2.3). Moreover, he did expliit a lowerbound for z : in our ase,z>� exp(2�s + 1) ZRd j1� exp��(x)jdx��1:- for z large enough, it is a well known onjeture that the set of extremal pointsof G(z;�) has a ardinal greater than 2 (See Ruelle [Rue69℄, Georgii [Geo88℄), in otherwords a phase transition should our.1.3 The in�nite dimensional di�usionLet (
;F ; P ) be a probability spae with a right ontinuous �ltration fFtgt>0 suhthat eah Ft ontains all P -negligible sets.Let (Bi(t); i 2 N ; t>0) be a sequene of independent d-dimensional Ft�Brownianmotions and X0 = fX1; X2; : : : g be an F0-measurable X-valued random variable on(
;F ; P ).We onsider the following system of equations : for eah i 2 N; t > 0;(1:12) Xi(t) = Xi +Bi(t)� 12Xj2NZ t0r�s(Xi(s)�Xj(s))ds+Xj2NZ t0(Xi(s)�Xj(s))dLij(s)where(1:13) (X(t); t>0) is an X� valued proess and(1:14) Lij(t); i; j 2 N ; are nondereasing ontinuous proesses withLij(0) = 0; Lij(:) = Lji(:) and Lij(t) = Z t0 1Ifrg(jXi(s)�Xj(s)j)dLij(s):The pair (X(:);L(:)) = f(Xi(:); Lij(:)); i; j 2 Ng� or simply X(:)� is alled a solutionof (1.12) provided that (1.13) and (1.14) are satis�ed and that X(!; �) 2 C for P -almostall !, where C is the set of regular paths de�ned by (1.4).We are now ready to state the main results of this paper.Theorem 1.4 (i) There exists a measurable subset Y of X suh that for eah �xedinitial value X0 in Y equation (1.12) admits a unique solution X(:) whih is an Y-valued di�usion proess.(ii) If the law of the initial variable X0 is a Gibbs state of G(z;�) for some z 2(0;1), then P (X0 2 Y) = 1 and the X-valued proess X(:) is a reversible di�usionproess. 6



So, ompleting the previous remark on the non-uniqueness of Gibbs states withlarge ativity, we dedue that for large z there may exist several reversible di�usionproesses solutions of equation (1.12).Let us mention that using Dirihlet forms, one an onstrut the law of suh adi�usion (f [Osa96℄, [Yos96℄). In [Tan97℄, one of the authors (H.T.) used a Skorohodtype deomposition to prove that, in the ase �s � 0, the di�usion assoiated withthe Dirihlet form oinides with the law of the solution of the system of equations(without the smooth interation term r�s). We onjeture that this remains true withthe model presented here, but we are mainly interested to use a pathwise approah,more expliit than the Dirihlet form method.2 Skorohod type equation for a domain in RndLet us �rst do some general onsiderations on reeting boundaries and assoiatedSkorohod's problems.2.1 Geometrial estimates on the reeting boundaryIn this subsetion and in the next one, the dimension of the Eulidean spae is �xedequal to an integer m.For a domain D � Rm we de�ne the set Nx = Nx(D) of inward normal unit vetorsat x 2 �D byNx = [̀>0Nx;`; Nx;` = fn 2 Rm : jnj = 1; U`(x� `n) \D = ;g:Let us reall some usual regularity onditions one an suppose on the boundary �D ofthe domain D.Condition (A) (uniform exterior sphere ondition):There exists a onstant �0 > 0 suh that8x 2 �D Nx = Nx;�0 6= ;:This means that a small enough sphere rolling along the boundary of D reaheseah point of this boundary.Condition (B):There exists onstants Æ0 > 0 and �0 2 [1;1) suh that :for any x 2 �D there exists a unit vetor lx verifying8n 2 [y2UÆ0 (x)\�DNy; hlx;ni> 1�0 :For example, Condition (B) is satis�ed when the domain veri�es the uniform interiorone ondition (see [Sai87℄). 7



Under Condition (A), eah x =2 D suh that d(x;D) < �0 has a unique projetion xon �D, satisfying d(x;D) = jx�xj and x�xjx�xj 2 Nx. We extend this projetion operatorto x 2 D by x = x.If, for eah x and y in the neighbourhood of D, the distane jx� yj between thereprojetions is ontrolled by the distane jx� yj between the points, then the boundaryofD is smooth in a ertain sense. Saisho established some useful regularity estimates onthe solutions of Skorohod equations in a domain satisfying suh a smoothness ondition.We will use these estimates for a domain satisfying a priori only Condition (A). So we�rst have to prove that :Lemma 2.1 If a domain D satis�es Condition (A), then the projetion operator onD satis�es the following ontinuity property :(2:1) For all x; y 2 Rm suh that d(x;D) < �0 and d(y;D) < �0jx� yj 6 �1 + jx�xj+jy�yj2�0�jx�xj�jy�yj�jx� yjProof.Let us take x; y 2 Rm suh that d(x;D) < �0 and d(y;D) < �0.If x = x and y = y, inequality (2.1) is learly satis�ed. So, in the sequel, we assumethat (jx � xj; jy � yj) 6= (0; 0). We now de�ne x on the line (x; x) and y on the line(y; y) in order to have:jx� xj = jy � yj = �0; x 2 [x; x℄; y 2 [y; y℄ and jx� yj>�0; jy � xj>�0:Suh x and y always exist, just hoose them as follows:� if x 6= x let x� x = �0 x�xjx�xj . Sine x�xjx�xj 2 Nx, this hoie implies thatU�0(x) \D = ;, thus jy � xj>�0.� if y 6= y let y � y = �0 y�yjy�yj . This implies that jx� yj>�0.� if x = x, and thus y 6= y, let x � x = �0 x�yjx�yj .With this hoie, jx � yj>�0 + jx� yj>2�0 thus jy � xj>�0.� if y = y, and thus x 6= x, let y � y = �0 y�xjy�xj . This hoie again impliesjx� yj>�0.Let us introdue the notations:x = jx� xj�0 ; y = jy � yj�0 ; ex = x� x�0 ; ey = y � y�0 and h = y � x�0We have:1>x > 0; 1>y > 0; jexj = 1; jeyj = 1; jex � hj>1 and jey + hj>1and inequality (2.1) beomes:jex � h� eyj 6 2x + y jxex � h� yeyj:8



It is suÆient to prove this inequality for x 6= y : the ontinuity of the right handside when y tends to x will then prove that it holds for any (x; y) in ℄0; 1℄2.From now on, the parameters x; y 2℄0; 1℄, x 6= y, are �xed. We only have toprove that the C1-funtionF (ex; ey; h) = jex � h� eyj2jxex � h� yeyj2de�ned on the C1-manifoldV = f(ex; ey; h) 2 (Rm)3 ; jexj = 1; jeyj = 1; jex � hj>1; jey + hj>1gadmits ( 2x + y )2 as an upper bound.First remark that sine jexj = 1jex � hj>1 , hex; hi6 jhj22Remark also that F is well-de�ned on V, sine, if hex; hi6 jhj22 ,xex � h� yey = 0) ey = xy ex � 1yh and h 6= 0 (beause jexj = jeyj and x 6= y)) jey + hj2 = 1 + 2xy hex; hi � 2 1y hh; hi+ jhj261 + xy jhj2 � 2y jhj2 + jhj2 = 1� 2�x�yy jhj2 < 1Using the famous theorem about di�erentiable funtions on manifolds, we obtainsupV F = max(supV1 F; supVr F; supV� F )whereV1 = f(ex; ey; h) 2 V; jhj>4gVr = f(ex; ey; h) 2 V; jex � hj > 1; jey + hj > 1;rF 2 Span(r(jexj2 � 1);r(jeyj2 � 1))gV� = f(ex; ey; h) 2 V; jex � hj = 1 or jey + hj = 1g:The omputation of an upper bound for F on V1 is very easy. Just use the triangularinequality twie:jex � h� eyj 6 (1� x)jexj+ jxex � h� yeyj+ (1� y)jeyjjxex � h� yeyj > jhj � x � y>2 if jhj>4thus supV1 F 6 �1 + 2� x � y2 �2 6 �x + yx + y + 2� x � yx + y �2 = � 2x + y�2:To ompute an upper bound for F on Vr, we remark thatrF = (rexF;reyF;rhF )and r(jexj2 � 1) = (2ex; 0; 0), r(jeyj2 � 1) = (0; 2ey; 0).9



If rF 2 Span(r(jexj2 � 1);r(jeyj2 � 1))g then rhF = 0, that is:rhF = �2(ex � h� ey)jxex � h� yeyj2 + 2(xex � h� yey)jex � h� eyj2jxex � h� yeyj4 = 0:This implies thatjex � h� eyj jxex � h� yeyj2 = jxex � h� yeyj jex � h� eyj2whih exatly means that F (ex; ey; h) = pF (ex; ey; h), i.e. F (ex; ey; h) equals 0 or 1.Thus supVr F61.Finally, we ompute a bound for F on V�. We will ompute an upper bound forF (ex; ey; h) when jexj = jeyj = 1, jex � hj>1 and jey + hj = 1. The omputation forjex � hj = 1 and jey + hj>1 is exatly the same (just exhange ex and ey, x and yand replae h by �h).If jexj = jeyj = jey + hj = 1 and jex � hj61:jey + hj = 1 , 2hey; hi = �jhj2 , 2hey + h; hi = jhj2jex � hj>1 , �2hex; hi>� jhj2thus jxex � h� yeyj2= jxex � y(ey + h)� (1� y)hj2= 2x + 2y � 2xyhex; ey + hi+ (1� y)jhj2 � 2x(1� y)hex; hi> 2x + 2y � 2xyhex; ey + hiand sine jex � h� eyj2 = 2� 2hex; ey + hi, we obtain :F (ex; ey; h)6 2� 2hex; ey + hi2x + 2y � 2xyhex; ey + hi :An elementary derivative omputation prove that, when A>B, the funtion u! 2�2uA�Budereases on [�1; 1℄, thus sup[�1;1℄ 2�2uA�Bu = 4A+B andsupV� F6 42x + 2y + 2xy = ( 2x + y )2:The proof is omplete. �2.2 Regularity estimates for the solution ofSkorohod's problemLet D be a domain of Rm . For a given w 2 W0(Rm) = fw 2 W (Rm) : w(0) = 0g andx 2 D, we onsider the following Skorohod equation with reeting boundary �D :(2:2) �(t) = x+ w(t) + '(t); t>0: 10



A solution is a pair (�; ') satisfying (2.2) and the following two onditions (2.3) and(2.4) (we also all � a solution of (2.2)) :(2:3) � 2 W (D):(2.4) ' is an Rm -valued ontinuous funtion with bounded variation on eah �nitetime interval satisfying '(0) = 0 and'(t) = Z t0 n(s)dk'ks; k'kt = Z t0 1I�D(�(s))dk'ks;where n(s) 2 N�(s) if �(s) 2 �D, and k'kt denotes the total variation of ' on [0; t℄.The existene and uniqueness of solutions of Skorohod type equations were studiedby many authors (Tanaka [Tan79℄, Lions and Sznitman [LS84℄, Saisho [Sai87℄). Saisho(see [Sai87℄ theorem 4.1) proved that, under Conditions (A) and (B), Skorohod equa-tion (2.2) admits a unique solution. Furthermore, this solution satis�es the followingLipshitz ontinuity property as a funtion of w(�) and x :Lemma 2.2 Suppose that the domain D satis�es Conditions (A) and (B) and let�(:) (respetively � 0(:)) be the unique solution of Skorohod equation (2.2) (resp. forw0 2 W0(Rm); x0 2 D; � 0(t) = x0 + w0(t) + '0(t); t>0).Then there exists a onstant C1, depending only on D, suh that for eah t>0,(2:5) j�(t)� � 0(t)j6�kw � w0kt + jx� x0j� exp �C1(k'kt + k'0kt)�:Proof.In Proposition 4.1 of [Sai87℄, Saisho proved this Lipshitz ontinuity property underCondition (A), Condition (B), and the following additional ondition on the projetionoperator x �! x (alled Condition (D) in [Sai87℄) :there exists C1>0 and C2 2℄0; �0[ suh that for all x; y 2 Rm :max(jx� xj; jy � yj)6C2 =) jx� yj 6 �1 + C1max(jx� xj; jy � yj)�jx� yj:Thanks to Lemma 2.1, the projetion always have this property (for any C2 2℄0; �0[and C1 = 1=(�0 � C2)) when D satis�es Condition (A). �Remark that the onstant C1 in the above Lemma a priori depends on the spaedimension m.The following lemma gives an estimate of the total variation k'kt of the proess'(t) (See Theorem 4.2 in [Sai87℄).Lemma 2.3 Suppose that the domain D satis�es Conditions (A) and (B). Then, forany �nite T > 0, we havek'kt6f(�0;T;:(w); sups6t jw(s)j) for all 06t6T;11



where f is a funtion de�ned onW0(R+)�R+ depending only on the onstants �0; �0; Æ0in Conditions (A) and (B), and �0;T;:(w) denotes the modulus of ontinuity of w in[0; T ℄ de�ned as usually by(2:6) �0;T;Æ(w) = sup0<s<t<Tjt�sj6Æ jw(t)� w(s)j:Moreover, the funtional w �! f(�0;T;:(w); sups6t jw(s)j) is bounded on eah set ofpaths W satisfying limÆ!0 supw2W �0;T;Æ(w) = 0:2.3 Appliation to a system of �nitely many hard ballsNow the dimension of the state spae is m = nd. Let us de�ne a system of n hard ballsmoving in Rd and reeted on the boundary of a domain Dn � Rnd :Dn = fxn = (x1; : : : ; xn) 2 Rnd : jxi � xjj > r; i 6= jg:Saisho and Tanaka [ST86℄ heked that for eah n 2 N , the domain Dn satis�es Con-ditions (A) and (B).Let b = (b1; : : : ; bn) be a Lipshitz ontinuous Rnd -valued funtion de�ned on Rnd .Let also take w = (w1; w2; : : : ) 2 W0(Rd)n.Saisho and Tanaka [ST86℄ proved that the following system of n equations in Rd(2.7),(2.8),(2.9) has a unique solution � = (�i)i=1;2;:::;n, sine it an be onsidered as aSkorohod equation in Rnd with �Dn as reeting boundary :(2:7) 8i 2 f1; 2; : : : ; ng�i(t) = xi + wi(t) + Z t0 bi(�(s))ds+ nXj=1 Z t0 (�i(s)� �j(s))d�ij(s):(2.8) (�i)i=1;2;:::;n are ontinuous funtions with j�i(t)� �j(t)j>r, t 2 [0;1), i 6= j.(2.9) (�ij)i;j=1;2;:::;n are ontinuous nondereasing funtions with �ij(0) = 0, �ij � �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):From now on, the number n of interating hard balls we study beomes randombut remains a.s. �nite. To study suh systems, we introdue the new on�gurationspae D :D = 1[n=0Dnwhere D0 = f;g, D1 = Rd , and for n>2,Dn = fxn = (x1; x2; : : : ; xn) 2 Rnd : jxi � xjj>r; 16i < j6ng:12



Let 	 be a funtion on f;g [ (S1n=1 Rnd) satisfying 	(;) = 0 and the followingonditions:(	:1) 	 is a C1 � funtion, invariant by permutation on (Rd)n for eah n>1;with r	 Lipshitz ontinuous.(	:2) 9K	 2 R; 8n 2 N ; inf(x1;��� ;xn;y)2Dn+1 �	(x1; � � � ; xn; y)� 	(x1; � � � ; xn)�>K	(	:3) 1Xn=1 znn! ZRnd �h(xn) exp(�	(xn))dxn < +1;where �h(xn) = exp(�P16i<j6n�h(xi; xj)) = 1Ifx1;x2;��� ;xng2X.We de�ne a probability measure �	z on D by �	z (f;g) = 1Z	z and(2:10) �	z (A) = 1Z	z znn! ZA �h(xn) exp(�	(xn))dxn; for any Borel set A � Dnwhere dxn = dx1dx2 : : : dxn and Z	z = 1 +P1n=1 znn! RRnd �h(xn) exp(�	(xn))dxn:By the symmetry property of 	, it is lear that �	z an be onsidered as a Probabilitymeasure on X.For x 2 D and w = (w1; w2; : : : ) 2 W0(Rd)N, we put(2:11) �	(t;x;w) = (�	(t;xn;wn); if x = xn; n 2 N ,0; if x = ;,where wn = (w1; w2; : : : ; wn), and �	(t;xn;wn) is the unique solution of the equation(2.7) where the drift b is given by(2:12) b(xn) = �r	(xn); n 2 N :We denote by PW the Wiener measure on W0(Rd). As in [Tan96℄ Lemma 2.4, weompute a bound for the probability that �	 osillate too muh when w is a Brownianmotion and the initial law is Gibbsian :Lemma 2.4 The proess �	(t; :; :) is a reversible di�usion proess under the probability�	z 
 P
NW . Moreover, for any �nite time T > 0, there exists positive onstants C3 andC4 depending only on T and 	 suh that8` 2 N ; 8"; Æ > 0�	z 
 P
NW �9i 2 N s.t. �0;T;Æ(�	i )>" and �	i (0) 2 U`�6C3zjU`j exp(�C4 "2Æ )
13



We now need to ontrol the geometrial repartition of the partiles in Rd . To thisaim, we introdue the onept of luster.For � 2 X; r0 > r and two points x, y in Rd , we say that a ontinuous urve  is ar0-onnetion between x and y with respet to (�; r0) if x; y 2  and  � U r02 (�). Thenthe oupied luster C(r0; x; �) of x is de�ned byC(r0; x; �) = fy 2 � : 9 an oupied onnetion between x and y g:The set U r02 (C(r0; x; �)) is the onneted omponent of U r02 (�) ontaining x.First we show the following estimate on the ardinal of the set C(r0; x; �).Lemma 2.5 Let �	z be the probability measure on D introdued in (2.10). Then, forany M 2 R+ , there exists a onstant C5 = C5(r; d; z) suh that, for any ` 2 N� and0 < " < 1,�	z �9x 2 U`; ℄C(r + "; x; :) > Md�6C5`d"[ rM2r+2 ℄ exp(�[ rM2r + 2 + 1℄K	):Proof. A set of diameter ` annot ontain more than (`=r)d hard balls of diameter r.Therefore if ℄C(r+"; x; �) > Md then the diameter of U r+"2 (C(r+"; x; �)) is larger thanrM , and this in turn implies the existene of fy1; � � � ; yM 0g � � suh that jy1j6`+ r+"2 ,jy1 � y2j6r + ", : : : jyM 0�1 � yM 0j6r + " for some M 0 = [ rM2(r+") ℄ + 1.�	z �f� suh that 9x 2 U`; ℄C(r + "; x; �) > Mdg�6 �	z �f� suh that 9fy1; � � � ; yM 0g � �;jy1j6`+ r + "2 ; jy1 � y2j6r + "; : : : ; jyM 0�1 � yM 0j6r + "g�6 exp(�M 0K	) 1Z	z 1Xn=M 0 znn!� nM 0�(M 0)!� ZR(n�M0)d �h(xn�M 0) exp(�	(xn�M 0))dxn�M 0� ZU`+ r+"2 dy1 ZUr+"(y1) dy2� � �ZUr+"(yM0�1) �h(yM 0)dyM 06 exp(�M 0K	)jU`+ r+"2 jjUr+" n UrjM 0�1zM 06 C5`d"M 0�1zM 0 exp(�M 0K	)for some integer M 0> rM2r+2 and with C5 a onstant depending only on r; d and z. Thisompletes the proof. �We now de�ne a set of regular paths, in the sense that their modulus of ontinuityis small enough and, at eah step of a time partition, the size of the lusters is bounded.Let "2 > "1 > 0, Æ > 0 and T; ` 2 N . We denote by �("1; "2; Æ; T;M; `) the set of allelements � = f�i(�)gi 2 W (X) satisfying(2:13) 8i 2 St2[0;T ℄ J(�(t); U`); �0;T;Æ(�i(�))6"1;(2:14) 8x 2 U`; 8k = 0; 1; : : : ; [T=Æ℄; ℄C(r + "2; x; �(kÆ))6M:14



Remark that if �(�) 2 �("1; "2; Æ; T;M; `) and "2 > 2"1, then8x 2 U`; 8t 2 [0; T ℄; ℄C(r + "2 � 2"1; x; �(t))6M:We then obtain the following lemma :Lemma 2.6 Let 0 < �2 < �1 < 12 , z > 0 and T; p 2 N . Then for any � > 0 we anhoose M =M(�1; �2; T; p) 2 N and C6 = C6(�1; �2; z; T; p) > 0 suh that8m 2 N ; �	z 
 P
NW (�	 2 �(m��1 ; m��2; 1m; T;M;mp))6C6m��:Proof. It is a onsequene of Lemmas 2.4 and 2.5. �3 Approximation of the solution and onvergeneLet J be any nonempty �nite subset of N . We now onsider an in�nite system ofpartiles in whih only a �nite number (those indexed by J) move following thedynamis de�ned in (2.7). Let b = (bi)i2J be an (Rd)J-valued Lipshitz ontin-uous funtion de�ned on (Rd)J, x = (x1; x2; : : : ) suh that fx1; x2; : : : g 2 X andw = (w1; w2; : : : ) 2 W0(Rd)N. We then obtain the following system of equations (3.1)under the onditions (3.2) and (3.3):(3:1) �i(t) = 8><>:xi + wi(t) + Z t0 bi(�(s))ds+Xj2J Z t0 (�i(s)� �j(s))d�ij(s) if i 2 J;xi if i =2 J:(3.2) (�i)i2J are ontinuous funtions with j�i(t)� �j(t)j>r, t 2 [0;1), i 6= j.(3.3) (�ij; i; j 2 J) are ontinuous nondereasing funtions with �ij(0) = 0, �ij � �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):For i =2 J or j =2 J , �ij � 0.Existene and uniqueness of the solution of (3.1) were disussed in the previoussetion.Let �s be the smooth pair potential with in�nite range de�ned in setion 1.2, andlet  `;�; ` 2 N ; � 2 X be nonnegative smooth funtions de�ned on Rd with the followingproperties :(3.4) r `;� is bounded Lipshitz ontinuous(3.5)  `;� = 0 on U �̀ = U` n Ur(� \ U ̀)(3:6) X̀2N sup�2X ZRdnU �̀ exp ��  `;�(x)�dx < +1:15



Suh funtions obviously exist: take for example  `;�(x) = ld+1Æ�(x) with Æ� a C2-funtion with bounded derivatives whih is equivalent to d(:; U �̀) on Rd (see [Ste70℄p.171).We an now de�ne on S1n=1 Rnd the following potential, as perturbation by the selfpotential  `;� of the smooth pair potential �s, with � as �xed external on�guration :for any J �nite subset of N ,(3:7) 	`;�(xJ) =Xi2J  `;�(xi) + Xi;j2Ji<j �s(xi � xj) + Xi2Jj;j�j j>`�s(xi � �j):Note that 	`;� satis�es the assumptions made on the funtion 	 in the setion 2.3 :(	.1) is obvious, (	.2) is true with K	 = �2�s and (	.3) omes from (3.6).From now on, and for the rest of this setion, let X0 = fX1; X2; : : : g be a �xedX-valued random variable with Gibbsian law � 2 G(z;�). Let (Bi(t); i 2 N) be afamily of independent Rd -valued Brownian motions.We now onsider, for eah ` 2 N , a partiular ase of equation (3.1) with xi = Xi; wi =Bi(:); bi = �12ri	`;X0 and J = J(X0; U`) = fi 2 N : jXij < `g random. The uniquesolution of this equation is denoted by (X`(t);L`(t)) = (Xì (t); Lìj(t); i; j 2 N) andsatis�es :(3:8) Xì (t) = 8><>:Xi +Bi(t)� 12R t0ri	`;X0(XJ̀(s))ds+Pj2J(X0;U`) R t0 (Xì (s)�Xj̀(s))dLìj(s) if i 2 J(X0; U`)Xi if i =2 J(X0; U`):(3.9) (Xì (:))i2J(X0;U`) are ontinuous proesses with jXì (t) � Xj̀(t)j>r, 8t>0,i 6= j:(3.10) (Lìj; i; j 2 N) are ontinuous nondereasing proesses with Lìj(0) = 0,Lìj � Lj̀i andLìj(t) = (R t0 1Ifrg(jXì (s)�Xj̀ (s)j)dLìj(s) if i; j 2 J(X0; U`)0 otherwise.Then we have the following onvergene result :Proposition 3.1 The sequene of proesses (X`)`2N� onverges a.s. in W (X) to areversible proess X1 with values in C \ �, where� = \0<�< 12 1\p=1 1\T=1 1[m0=1 1\m=m0 �[m��; 1m; T;mp℄; and�["; Æ; T; `℄ = ff�ig 2 W (X) : �0;T;Æ(�i) < " for any i with mint2[0;T ℄ j�i(t)j < `g:Moreover, the proess X1(:) is the unique solution of the in�nite dimensional systemof stohasti equations (1.12) when the initial ondition is equal to X0 = fX1; X2; : : : g.16



The rest of this setion is devoted to the proof of Proposition 3.1. We �rst onstruta set of probability one on whih (X`) is a Cauhy sequene and then we prove thatthe limit point is the unique solution of (1.12).Lemma 3.2 Let 0 < �2 < �1 < 12 and T; p 2 N . Then we an hoose M 2 N suhthat 1Xm=1 (m+1)pX`=mp P (X`(�) 2 �(m��1; m��2; 1m; T;M;mp)) < +1:Proof. Let �`;�z be the Gibbs measure de�ned by (2.10) where the funtion 	 istaken equal to the potential 	`;� de�ned in (3.7). By omparing �`;�z and the loalspei�ation �U`;�;z (de�ned by (1.11)) as detailed in the Proposition 6.1 (steps 1 and2) in [FR℄, we obtain�`;�z (N(U �̀) 6= 0)6 ZXN(U �̀)(�)�`;�z (d�)6z exp �� 2�s� ZRdnU �̀ exp ��  `;�(x)�dx;the same upper-bound holds for j�`;�z ��U`;�;zj(N(U �̀) = 0), whih leads to the estimatek�`;�z � �U`;�;zk62z exp �� 2�s� ZRdnU �̀ exp ��  `;�(x)�dxwhere k�k denotes the total variation of a signed measure �. Then,P �X`(�) 2 �(m��1 ; m��2; 1m ; T;M;mp)�6 Z P �X`(�) 2 �(m��1; m��2; 1m; T;M;mp)jX`(0) = ��d�`;�z (�)d�(�)+ Z k�`;�z � �U`;�;zkd�(�):By Lemma 2.6, assumption (3.6) and the above inequalities the series in Lemma3.2 onverges. �We �x the parameters 0 < �2 < �1 < 12 , T 2 N and p 2 N .By the saling property of the Brownian motion B and Doob's inequality, we ontrolthe modulus of ontinuity of B as follows :1Xm=1 (m+1)pX`=mp P (�0;T;1=m(Bi) > m��1 for some i with mint2[0;T ℄ jXì (t)j < mp) < +1:Combining this and Lemma 3.2, by Borel Cantelli's Lemma, for almost all !, thereexists M 2 N and m0 = m0(!) 2 N suh thatfor m>m0 and mp6` < (m+ 1)p;X`(�); X`+1(�) 2 �(m��1; m��2 ; 1m ; T;M;mp)and 8i 2 St2[O;T ℄ J(X`(t); Ump); 8h 2℄0; T ℄; �0;T;h(Bi)62h�1:17



We are now looking for an upper bound for jXì � X`+1i j when i belongs to somesubset of indies.To this aim we need a omparison lemma formulated under the following generality :for � = 1; 2, let x(�) 2 X, and J(�) be �nite subsets of N . We also de�ne two driftfuntions on (Rd)J(�) by :b(�)i (x) = �12 Xj2J(�)r�s(xi � xj) + (�)i (x); i 2 J(�);where (�) = ((�)i )i2J(�) is an (Rd)J(�)-valued Lipshitz ontinuous funtion. We denoteby (�(�)(t); �(�)(t)) the unique solution of (3.1) with J = J(�), x = x(�), bi = b(�)i andw 2 W0(Rd)N �xed not depending on �.Lemma 3.3 Suppose that there exists R;R0; R1 > 0, M 2 N� , "0>0, "1; "2 > 0,0 < Æ6T suh that(3:11) j(1)i (x)j; j(2)i (x)j6g(R) if xi 2 UR1�R(3:12) 8i 2 J(x(1); UR0) [ J(x(2); UR0); 8h 2℄0; T ℄; jx(1)i � x(2)i j6"0 and �0;T;h(wi)62h�1(3:13) �(1)(�); �(2)(�) 2 �("1; "2; Æ; T;M;R0):If 2("0+"1) < "2 < rM and k satis�es k(Mr+R)6R06R1, then, there exists a onstantC7 suh that for all indies a satisfying jx(1)a j6R0 � k(Mr +R) and for all t 2 [0; Æ℄,j�(1)a (t)� �(2)a (t)j 6 C7eKC7Æ"0 + (KC7Æ)kk! ("0 + 2"1) + 3C7Æg(R)eKC7Æ:(Reall that K is the Lipshitz onstant of r�s de�ned in (1.7)).Proof. Put R0 =Mr +R. By (3.13) for any a 2 J(x(�); UR0�R0),�0;T;Æ(�(�)a (�))6"1; ℄C(r + "2; x(�)a ;x(�))6M; � = 1; 2:Sine "2 < r=M , we see thatC(r + "2; x(�)a ;x(�)) � UR0�R�"2 ; � = 1; 2:We putJ(a) = J(x(1);C(r + "2; x(1)a ;x(1)));JR(a) = J(x(1); UR+"2(C(r + "2; x(1)a ;x(1)))):Then, sine (M � 1)(r + "2) +R + "26R0, we have(3:14) a 2 J(a) � JR(a) � J(x(1); UR0(x(1)a )) and ℄J(a)6M:By (3.12) and (3.13), for t 2 [0; Æ℄j�(1)i (t)� �(1)j (t)j>"2 � 2"1 > 0; if i 2 J(a); j =2 J(a);j�(2)i (t)� �(2)j (t)j>"2 � 2"1 � 2"0 > 0; if i 2 J(a); j =2 J(a):18



Then we have, for � = 1; 2; t 2 [0; Æ℄; and i 2 J(a);�(�)i (t) = x(�)i +W (�)i (t) + Xj2J(a)Z t0 (�(�)i (s)� �(�)j (s))d�(�)ij (s);whereW (�)i (t) = wi(t)� 12 Xj2J(�) Z t0 r�s(�(�)i (s)� �(�)j (s))ds+ Z t0 (�)i (s; �(�)(s))ds:For x = (x1; x2; : : : ) suh that x = fx1; x2; : : : g 2 X and for any nonempty �nitesubset J of N, we denote by xJ = (xi; i 2 J) 2 (Rd)J the projetion of x on (Rd)J andby jxjJ = maxi2J jxij its supremum norm.Sine eah proess �(�)J(a)(:) is solution of a Skorohod equation, we an apply Lemma 2.2for a state spae dimension m = ℄J(a)d bounded by Md and for w = W (�)J(a).Remark that8h 2℄0; T ℄; �0;T;h(W (�)i )62h��1 +r�sh=2 + g(R)h;whih tends uniformly to 0 for R > 0 and i 2 J(a) when h tends to 0. So by Lemma 2.3there exists a onstant C > 0 suh that8t 2 [0; Æ℄; 8i 2 J(a); kXj2J(a)Z t0 (�(�)i (s)� �(�)j (s))d�(�)ij (s)kt6C:This impliesj�(1)i (t)� �(2)i (t)j 6j�(1)J(a)(t)� �(2)J(a)(t)j6 exp �2pMC1C��jx(1)J(a)� x(2)J(a)j+ kW (1)J(a)�W (2)J(a)kt�6C7M �jx(1)J(a)� x(2)J(a)j+ kW (1)J(a)�W (2)J(a)kt�;where C7 =M exp(2pMC1C).By (3.12) and (3.13) we have j�(1)(t)��(2)(t)jJ(x(1);UkR0(x(1)a ))6"0+2"1: Thus assump-tion (1.8) holds, and together with assumption (1.7) on r�s, we havekW (1)J(a)�W (2)J(a)kt6 12 Xi2J(a) Xj2JR(a) Z t0 jr�s(�(1)i (s)� �(1)j (s))�r�s(�(2)i (s)� �(2)j (s))jds+ 12 Xi2J(a) Xj =2JR(a) Z t0 �jr�s(�(1)i (s)� �(1)j (s))j+ jr�s(�(2)i (s)� �(2)j (s))j�ds+Xi2J(a)Z t0 �j(1)i (�(1)(s))j+ j(2)i (�(2)(s))j�ds6 12 Xi2J(a)K Z t0 maxj2JR(a) j�(1)i (s)� �(1)j (s)� �(2)i (s) + �(2)j (s)jds+ 3Mg(R)t6 MK Z t0 j�(1)(s)� �(2)(s))jJR(a)ds+ 3Mg(R)t:19



Then we have, for t 2 [0; Æ℄,(3:15) j�(1)a (t)� �(2)a (t)j6 C7jx(1) � x(2)jJ(a)+KC7 Z t0 j�(1)(s)� �(2)(s)jJR(a)ds+ 3C7g(R)t:From (3.14) we see that if a 2 J(x(1); UR0�2R0) and i 2 JR(a), then i 2 J(x(1); UR0�R0)and so we an apply the above omputation to the ith oordinate : for t 2 [0; Æ℄,(3:16) j�(1)i (t)� �(2)i (t)j6 C7jx(1) � x(2)jJ(i)+KC7 Z t0 j�(1)(s)� �(2)(s)jJR(i)ds+ 3C7g(R)t:Sine JR(i) � J(x(1); U2R0(x(1)a )), from (3.14), (3.15) we have for eah t 2 [0; Æ℄j�(1)a (t)� �(2)a (t)j6 C7jx(1) � x(2)jJ(x(1);U2R0(x(1)a ))+ KC7 Z t0 �C7jx(1) � x(2)jJ(x(1);U2R0 (x(1)a ))+KC7 Z s0 j�(1)(u)� �(2)(u)jJ(x(1);U2R0(x(1)a ))du+ 3C7g(R)s�ds+ 3C7g(R)t6 C7(1 +KC7t)jx(1) � x(2)jJ(x(1);U2R0(x(1)a ))+ (KC7)2 Z t0 Z s0 j�(1)(u)� �(2)(u)jJ(x(1);U2R0(x(1)a )) du ds+ 3C7g(R)(t+KC7t2=2):Repeating this proedure, we obtain for a 2 J(x(1); UR0�kR0)j�(1)a (t)� �(2)a (t)j6 C7 exp(KC7t)jx(1) � x(2)jJ(x(1);UkR0(x(1)a ))+ (KC7)k Z t0 Z t10 � � �Z tk�10 j�(1)(tk)� �(2)(tk)jJ(x(1);UkR0(x(1)a )) dtk � � �dt2 dt1+ 3C7g(R)t exp(KC7t):One more, by (3.12) and (3.13) we have j�(1)(t)� �(2)(t)jJ(x(1);UkR0(x(1)a ))6"0+2"1: Thenwe obtain the desired estimate. �For m>m0 large enough suh that 4m��1 < m��2 < rM , and for ` in the followinginterval mp6` < (m+ 1)p, we put J(1) = J(X0(!); U`), J(2) = J(X0(!); U`+1),(1)i (x) = �12 Xj;jXj(!)j>`r�s(xi �Xj(!))� 12r `;X0(!)(xi);(2)i (x) = �12 Xj;jXj(!)j>`+1r�s(xi �Xj(!))� 12r `+1;X0(!)(xi);20



"1 = m��1 , "2 = m��2, Æ = 1m , R = mp�3, R1 = `� R.For t 2 [0; 1m ℄ we put x(1) = x(2) = X0(!), "0 = 0, R0 = 2Tmp�1 and applyLemma 3.3 with k = m. Then, there exists m1 suh that, for m>m1,jXì (!; t)�X`+1i (!; t)j6a(m); i 2 J(X0(!); U(2Tm2�m)R); t 2 [0; 1m ℄;wherea(m) = 2m! (KC7m )mm��1 + 3C7m g(mp�3) exp(KC7=m):For t 2 [ 1m ; 2m ℄ we put x(1) = X`(!; 1m), x(2) = X`+1(!; 1m), "0 = a(m), R0 = (2Tm2 �m)Rand apply Lemma 3.3 with k = m. Then, we havejXì (!; t)�X`+1i (!; t)j6(1 + C9)a(m); i 2 J(X0(!); U(2Tm2�2m)R); t 2 [ 1m; 2m ℄;where C9 = supm>m1(C7 exp(KC7m ) + 1m!(KC7m )m) < +1.Repeating this proedure, we have for all i 2 J(X0(!); UTmp�1), ` 2 [mp; (m + 1)p℄and t 2 [0; T ℄,jXì (!; t)�X`+1i (!; t)j6a(m)mT�1Xk=0 Ck9 = a(m)CmT9 � 1C9 � 1 :Hene, we an hoose m2>m1 suh that for any m>m2 and i 2 J(X0(!); UTmp�1),1X`=mp supt2[0;T ℄ jXì (!; t)�X`+1i (!; t)j 6 1Xn=m (n+1)pX`=np a(n)CnT9 � 1C9 � 16 1Xn=m(n+ 1)pa(n) CnT9C9 � 16C10 1Xn=m � 1n! + CnT9 exp(��1n�2(p�3))�This series onverges if we hoose the parameter p>p0 > 1=�2 + 3 (we reall that �2 isthe exponent appearing in the exponential dereasing of r�s (1.8)).So there exists X1(�) suh that, for all i 2 J(X(!); UTmp�1) and ` > mp,(3:17) supt2[0;T ℄ jXì (!; t)�X1i (!; t)j < C11m! :Thus we obtainP ( lim`!1 supt2[0;T ℄ jXì (t)�X1i (t)j = 0; T > 0; i 2 N) = 1;whih is exatly the ondition for X` to onverge a.s. in W (X) to X1.21



Sine the proess X1(�) is the limit of X`(�), the reversibility of X1(�) is a onse-quene of the reversibility property for X`(�) (see the proof of Theorem 2 in [Tan96℄).Remark that any anonial Gibbs state assoiated to the potential � is also areversible state for the proess X1, sine it is a mixture of Gibbs states (with respetto the ativity parameter z).From Lemma 3.2 and (3.17) we easily have1Xm=1P (X1(�) 2 �(m��1; m��2 ; 1m; T;M;mp)) <1;and so P (X1(�) 2 C \�) = 1.The proof of Proposition 3.1 will be omplete by proving the following lemma.Lemma 3.4 The proess X1(t) is the unique solution of (1.12) with initial onditionequal to X0 = fX1; X2; : : : g.Proof. By the same argument as in the proof of Lemma 3.3 for any a 2 N andsuÆiently large ` we have �nite subsets J`( km ; a) 3 a, k = 0; 1; : : : ; mT suh thatjXì (t)�Xj̀ (t)j > m��1 ; i 2 J`( km; a); j =2 J`( km; a); t 2 [ km; k + 1m ℄:By virtue of the estimate (3.17) for suÆiently large ` we an hose J`( km ; a), k =0; 1; : : : ; mT to be independent of ` and denote them by J( km; a), k = 0; 1; : : : ; mT .Then we haveXì (t) = Xì ( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(Xì (s)�Xj̀ (s))ds+ Xj2J( km ;a) Z tkm (Xì (s)�Xj̀ (s))dLìj(s); i 2 J( km; a); t 2 [ km; k + 1m ℄:By Lemma 2.2 we obtain(3:18) X1i (t) = X1i ( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(X1i (s)�X1j (s))ds+ Xj2J( km ;a) Z tkm (X1i (s)�X1j (s))dL1ij (s); i 2 J( km; a); t 2 [ km; k + 1m ℄;whih implies that X1(�) is a solution of (1.12).Suppose that Y(�) is also a solution of (1.12). Let X1(�; !) 2 � and Y(�; !) 2 C.For any T 2 N , m3 2 N and p>p0, we an hoose 0 < � < �0 < 12 and m>m3 withm�� > 4m��0 suh thatY(�; !) 2 C[m��; 1m; T;M;mp℄; X1(�; !) 2 �[m��0; 1m; T;mp℄:22



Then we an take a sequene J( km; a) 3 a for whih (3.18) holds for eah k = 0; 1; : : : ; mTand Yi(t) = Yi( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(Yi(s)� Yj(s))ds+ Xj2J( km ;a) Z tkm (Yi(s)� Yj(s))dLYij(s); i 2 J( km; a); t 2 [ km; k + 1m ℄:Then by the same argument to get (3.17) we havesupt2[0;T ℄ jYi(!; t)�X1i (!; t)j < C12m! ; i 2 J(X0(!); UTmp�1):Sine we an take m as large as we want, we have X(t; !) = Y(t; !); t 2 [0; T ℄, for anyT > 0 and ! in a set of full probability. This ompletes the proof of Proposition 3.1.�4 Solution with deterministi initial ondition andmeasurability propertiesFor x = fx1; x2; : : : g 2 X and w = (w1; w2; : : : ) 2 W0(Rd)N, we onsider the followingsystem of equations (4.1) under the onditions (4.2) and (4.3):(4:1) 8i 2 N ;�i(t) = xi + wi(t)� 12Xj2N Z t0 r�s(�i(s)� �j(s))ds+Xj2N Z t0 (�i(s)� �j(s))d�ij(s)(4:2) �(�) = f�1(�); �2(�); � � � gi 2 C \�(4.3) �ij; i; j 2 N are ontinuous nondereasing funtions with �ij(0) = 0, �ij = �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):We denote by � the set of all elements (x;w) of X�W0(Rd)N for eah of whih thereexists a solution �(t;x;w) of (4.1). By the same argument as in the proof of Lemma3.4, we see that �(t;x;w) is the unique solution of (4.1). Remark that if x(�) 2 C \�,then x(s+ �) 2 C \ �. So, for (x;w) 2 �,(4:4) (�(s;x;w); �sw) 2 �; s>0;and(4:5) �(s+ t;x;w) = �(t; �(s;x;w); �sw); s; t>0;23



by virtue of the uniqueness, where �sw(t) = w(s+ t)�w(s). Putb�(t;x;w) = (�(t;x;w) if (x;w) 2 �x otherwise ;for t>0. Similarly as in lemma 6.1 in [Tan96℄, we an prove that :(4.6) � is B(X�W0(Rd)N)�measurable(4.7) (�;x;w) 7�! b�(�;x;w) is measurable from X�W0(Rd)N to W (Rd)N endowedwith their Borel �elds.End of the proof of Theorem 1.4 (i).By Fubini's theoremY = fx 2 X : P
NW (�x) = 1gis a measurable subset of X where �x = fw 2 W0(Rd)N : (x;w) 2 �g. By Proposition3.1, if the distribution of X is � 2 G(z;�), for some z > 0, then P ((X;B) 2 �) = 1,and so P (X 2 Y) = 1. We putP (t;x;�) = P
NW (�(t;x; �) 2 �);for t>0, x 2 Y and � 2 B(Y). Suppose that x 2 Y. Then (x;B) 2 �, a.s. and so by(4.4) and (4.5)(�(�;x;B); ��B) 2 �; a.s. and �(� + t;x;B) = �(t; �(�;x;B); ��B); a.s.for any Ft�stopping time � . From the strong Markov property of B we see that�(�;x;B) 2 Y a.s. andP (�(� + t;x;B) 2 �jF�) = P
NW (�(t; �(�;x;B); �) 2 �)= P (t; �(�;x;B);�); a.s.for t>0 and � 2 B(Y). This means that �(t;x;w) is a strong Markov proess. �Aknowledgement : Hideki Tanemura (the third author) thanks Lille 1 Universityfor very kind hospitality.Referenes[FR℄ M. Fradon and S. Roelly. In�nite dimensional di�usion proesses with sin-gular interation. To appear in Bulletin des Sienes Math�ematiques.[Fri87℄ J. Fritz. Gradient dynamis of in�nite point systems. Ann. Prob., 15:478{514,1987.[Geo88℄ H.O. Georgii. Gibbs Measures and Phase Transitions. Walter de Gruyter,1988. 24
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