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1 Introduction

One of the most fundamental problems in Statistical Mechanics is the characterization of the
family of all stationary or reversible measures of stochastic dynamics.
Kolmogorov analysed in his pioneer paper [13] the strong connection between time-reversible dif-
fusions and Gibbs measures in the context of finite-dimensional processes. Since that time it
has been extended to several stochastic models. Let us refer, among others, to Doss and Royer
[4] for infinite-dimensional interacting Brownian diffusions on a lattice (see also [1] for an al-
ternative proof), to Iwata [12] for P (ϕ)1-time diffusions, to Funaki [9] for a multi-dimensional
Ginzburg-Landau continuum model or to Sakagawa [26] for a Ginzburg-Landau model of conser-
vative type. Here, we consider the following continuous model : an infinite system of hard balls
in Rd, undergoing Brownian motions and submitted to the influence of a smooth finite range pair
potential.

On one side, a system of infinite Brownian particles (i.e. balls with radius 0) with smooth pair
interaction has first been treated by Lang who constructed it in [14] as solution of an infinite-
dimensional stochastic differential equation (see also [8]). Lang also proved in [15] that the
canonical Gibbs measures associated to the smooth potential are the unique reversible measures
for such dynamics. Georgii obtained in [10] with different techniques a similar result for infinite-
dimensional Brownian diffusions associated to more general smooth potentials. On the other side,
a system of infinitely many Brownian balls submitted to an external finite range pair potential
was constructed by the authors in [5] (only for Gibbsian initial distribution). See also [29] for the
case without external potential and [7] for an extension to infinite range pair potentials . The
system is the unique solution to an infinite-dimensional Skohorod type equation (see equation
(E) stated in section 2) where the hard core situation - balls cannot overlap - appears as a local
time term in addition to the basic Brownian motion. We also proved in [5] that Gibbs states are
reversible measures but we did not describe the structure of the family of all reversible measures.
The goal of this paper is to clarify this last point.

In section 2 we introduce the infinite dimensional equation (E) and state the main results.
In section 3 we construct a strong solution for (E) for an explicit set of deterministic initial
conditions. We connect in section 4 the time-reversibility of the system with a symmetry property
of the associated infinitesimal generator : it is the so-called Detailed Balance equation. In section
5 we show that any measure satisfying the Detailed Balance Equation also obeys to an integral
equation exhibiting a symmetry property of the associated Campbell measure. We conclude the
proof of the main theorem by proving that such a measure is necessarily canonical Gibbs.

2 Dynamics and main results

2.1 Configuration spaces

The particles we deal with in the present paper move in Rd, for a fixed d>2, endowed with the
Euclidian norm denoted by | |. B(y, ρ) will denote the closed ball centered in y ∈ Rd with radius
ρ ≥ 0 and more generally, for any A ⊂ Rd, we define

B(A, ρ) = {y ∈ Rd such that d(y,A)6ρ}

where d(y,A) denotes the Euclidian distance between y and A. The volume of a subset A in Rd

is also denoted by |A|.
The modelization of point configurations may be done in two equivalent ways :

The first possibility is to represent an n points configuration in Rd as a subset (with multiplicity)
of cardinal n in Rd. The second possibility is to modelize it as a point measure

∑n
i=1 δξi on Rd.

More generally, the set of all point configurations in Rd will be the set M of all point Radon
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measures on Rd :

M =

{
ξ =

∑
i∈I

δξi such that I ⊂ N, ξi ∈ Rd and for all Λ compact in Rd, ξ(Λ) < +∞

}
.

M is endowed with the topology of vague convergence. By simplicity, we will identify any point
measure ξ ∈ M with the subset of Rd {ξi, i ∈ I} corresponding to its support and with the
representants of this subset in (Rd)I , writing for example ξΛ = ξ ∩ Λ for the restriction of this
configuration to Λ ⊂ Rd, ξη for the concatenation of both configurations ξ and η; in particular, if
y is a point in Rd belonging to the configuration η we write ηry for the configuration η without
the point y.
M∩ (Rd)n is the set of all n points configurations.
We introduce the following notations.

• For Λ ⊂ Rd, NΛ is the counting variable on M : NΛ(ξ) = Card{i ∈ N, ξi ∈ Λ}.

• For Λ ⊂ Rd, BΛ is the σ-algebra on M generated by the sets {NA = n}, n ∈ N, A ⊂ Λ, A
bounded.

• π (resp. πΛ) is the Poisson process on Rd (resp. on Λ) with intensity measure the Lebesgue
measure dy (resp. dy|Λ).

• For z > 0, πz (resp. πzΛ) is the Poisson process on Rd (resp. on Λ) with activity z, that is
with intensity measure z dy (resp. z dy|Λ).

The particles we deal with in this paper are not reduced to points but are hard balls or spheres
of diameter r, for a fixed r > 0. So the set of allowed configurations is the following subset of M :

A = {ξ ∈M such that ∀i 6= j |ξi − ξj |>r} .

We will also use the set AΛ = {ξ ∈ A such that ∀i ξi ∈ Λ} of allowed configurations with support
in Λ ⊂ Rd.

Remark 2.1 : (i) The number of hard spheres in a unite volume of Rd is bounded. In
particular, if the evolution of the particles is defined by an interaction potential with finite range
R > r, a fixed particle can interact with at most a finite number N of particles, where N only
depends on d, R/r, and the density of the densest packing of equal spheres.
(ii) Furthermore, a fixed particle of any allowed configuration can touch at most a fixed number
τ(d) of other particles, where τ(d) is the d-dimensional kissing number.

Proof (i) The sphere packing problem asks for the densest packing of balls of the same size into
Euclidean d-space. It is trivial for d = 1 : the maximal density ∆(1) (that is the proportion of
the space which is occupied by the spheres) is equal to one. The answer for d = 2 has long been
known : the standard hexagonal packing is optimal (cf. Figure 1) and ∆(2) = π/

√
12 = 0.9069....

The famous case d = 3 was only very recently solved by Hales [11], who proved the old Kepler
conjecture : ∆(3) = π/

√
18 = 0.74048 and the so-called face-centered cubic packing is optimal.

See [2] for an extensive study of the state of the art in 1998 and [20] for a recent review of the
new proofs.
For d ≥ 4, the value of ∆(d) is not exactly known but there exist upper and lower bounds. The
function d 7→ ∆(d) is decreasing and the bounds which seem to be the best at this day are given
by Rogers ([21] page 20) : 2−d ≤ ∆(d) ≤ 2−0,5990d. Thus, let Λ be a convex subset of Rd and
ξ ∈ A such that Λ contains at least two points of ξ (NΛ(ξ) ≥ 2). Then NΛ(ξ) ≤ ∆(d) |B(Λ,r/2)|

|B(0,r/2)| ;
in particular, for Λ = B(0, R),

N = sup
ξ∈A

NB(0,R)(ξ)− 1 ≤ ∆(d)
(R+ r/2

r/2

)d
− 1 = ∆(d)

(
1 +

2R
r

)d
− 1.
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(ii) The kissing number τ(d) (also called Newton number or contact number) is defined as the
number of hard spheres that can touch one sphere in dimension d. It is trivial that τ(1) = 2 and
for d = 2 τ(2) = 6 (see Figure 1). In three dimensions, the value of τ(3) was the subject of a
famous discussion between Newton (who believed the answer was 12) and Gregory (who thought
that 13 may be possible) in 1694. The correct answer is 12, and the first complete proof was given
in 1953 [27]. Up to now, the exact value of τ(d) is only known for three dimensions above d = 3 :
τ(4) = 24, τ(8) = 240, τ(24) = 196560 (see [19] for the most recent progress on this topics).

�

Figure 1: N = 18 if d = 2 and R = 2r.

2.2 Interaction potential, associated Gibbs and Canonical Gibbs measures

For a complete description in a general framework of the concepts introduced in this section, we
refer the reader to [10].

We are dealing with hard balls with diameter r submitted to the action of a pair potential,
which is a function on Rd of class C2 with finite range R > r, i.e. satisfying ϕ(x) = 0 if |x|>R
and ϕ(x) = ϕ(−x). Due to the hard core situation the values of ϕ(x) may be chosen arbitrarily
for |x| < r. In particular, one can assume without restriction that ϕ vanishes in a neighborhood
of 0 and that ∇ϕ(0) = 0. Since ϕ has compact support, it is bounded from below : the smallest
value of interaction between two particles is given by

ϕ = inf
|x|>r

ϕ(x) 6 0.

If this real constant is zero there exists only repulsion between the balls; if it is negative there
exists an attraction domain around each ball.

The energy of a configuration ξ ∈ M submitted to the potential ϕ in the compact volume
Λ ⊂ Rd with the boundary condition η ∈M is given by :

EΛ(ξ|η) =


1
2

∑
ξi,ξj∈Λ

ϕ(ξi − ξj) +
∑

ξi∈Λ,ηj∈Λc

ϕ(ξi − ηj) if ξΛηΛc ∈ A

+∞ otherwise.
(1)

(the condition ξΛηΛc ∈ A corresponds to configurations for which ξΛ ∈ A, ηΛc ∈ A and no ball of
ηΛc is overlapping a ball of ξΛ). This finite-volume energy is well defined since both sums contain
no more than |B(Λ,r/2)|

|B(0,r/2)|N terms, see Remark 2.1. Moreover, e−EΛ(ξ|η) vanishes as soon as the
configuration ξΛηΛc is not allowed.
By extension, we can define a one-point energy as follows : for x ∈ Rd and η ∈M,

E(x|η) =


∑
ηj

ϕ(x− ηj) if xη ∈ A

+∞ otherwise.
(2)

(this function is finite if and only if η is an allowed configuration for which the configuration xη
with one extra ball centered in x is still allowed.)

We now define the set G(z) of Gibbs measures on A associated to the potential ϕ with activity
parameter z ∈ R+. For each compact subset Λ of Rd, let us define a local density function with
respect to the Poisson Process πzΛ by :

fzΛ(ξ|η) =
1

ZΛ,η
z

exp(−EΛ(ξ|η)) (3)

4



where the so-called partition function ZΛ,η
z is the renormalizing constant :

ZΛ,η
z = e−z|Λ|

(
1 +

+∞∑
n=1

zn

n!

∫
Λn

exp−EΛ(y1 · · · yn|η) dy1 · · · dyn

)
.

Due to the hard core, the above series reduces to a finite sum and 0 < ZΛ,η
z < +∞.

Definition 2.2 A Probability measure µ on M belongs to the set G(z) of Gibbs measures on hard
balls with activity z and associated potential ϕ if and only if, for each compact subset Λ ⊂ Rd,

dµ(ξ|BΛc)(η) = fzΛ(ξ|η) dπzΛ(ξ) for µ-a.e. η.

Remark 2.3 : Any Gibbs measure in G(z) has its support included in A.
Dobrushin proved in [3], using compactness arguments, that there exists at least one element in
G(z) when the potential contains a hard core component. Furthermore the set G(z) is convex and
compact.
About the cardinality of G(z), remarking that the sum of the hard core and the smooth potential
ϕ is superstable and lower regular in the sense of Ruelle [23], we have :
- If z is small enough, Ruelle proved that uniqueness holds (see [22] Theorem 4.2.3). In our case,
a sufficient condition would be : z ≤ eNϕ−1(|B(0, r)|+

∫
1Ir<|y|<R|1− e−ϕ(y)|dy)−1.

- For z large enough it is conjectured (see [22] and [10]) - but still not proved - that phase
transition occurs : Card G(z) > 1. Moreover, it is conjectured by physicists that the closest
packing configurations can be obtained as limit points of sequences of Gibbs measures µz ∈ G(z)
for z converging to infinity.

See also [18] for a construction of a pure hard core Poisson Process with applications in per-
colation theory and [30] for the description of such a process as a Gibbs cluster process.

We now define the set CG of canonical Gibbs states on A associated to the potential ϕ.

Definition 2.4 A Probability measure µ on A belongs to the set CG of canonical Gibbs states on
A for the pair potential ϕ if and only if, for each compact subset Λ ⊂ Rd and n ∈ N, for µ-a.e. η,

dµ(ξ|BΛc , NΛ)(η, n) =


1

ZΛ,η,n
1INΛ(ξ)=n exp(−EΛ(ξ|η)) dπΛ(ξ) if ZΛ,η,n > 0

0 otherwise,

where the partition function ZΛ,η,n for the particle number n is the finite renormalizing constant :
ZΛ,η,n = e−|Λ|

n!

∫
Λn exp−EΛ(y1 · · · yn|η) dy1 · · · dyn.

Since the potential ϕ is bounded from below by ϕ, using Remark 2.1 we deduce that the map
y 7→ EΛ(y|η) is bounded from below on Rd by ϕN . Thus Georgii’s conditions (6.11) and (6.12)
from [10] hold, which allows to apply Theorem 6.14 of [10] and to deduce that the set of canonical
Gibbs states CG is obtained by mixing elements of different G(z), z ∈ R+ : for any µ ∈ CG there
exists a probability measure θ on R+ such that

µ =
∫

R+

µz θ(dz) with µz ∈ G(z) for each z ∈ R+. (4)
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2.3 The stochastic equation (E) and statement of the main results

Let (Ω,F , P ) be a probability space with a right continuous filtration {Ft}t>0 such that each
Ft contains all P− negligible sets and let (Wi(t), t>0)i∈N be a family of Ft-adapted independent
d-dimensional Brownian motions.

Let us denote C(R+,M) (respectively C(R+,A)) the set of continuous M-valued (resp. A-
valued) paths on R+, endowed with the topology of uniform convergence on each compact time
interval.

Let ϕ be the smooth pair potential with finite range R introduced in the previous subsection.
We consider the following infinite gradient system of stochastic equations satisfied by the Brownian
balls :

(E)


For i ∈ N, t ∈ R+,

Xi(t) = Xi(0) +Wi(t)−
1
2

∑
j∈N

∫ t

0
∇ϕ(Xi(s)−Xj(s))ds+

∑
j∈N

∫ t

0
(Xi(s)−Xj(s))dLij(s)

where

• (Xi(t), t>0)i∈N ∈ C(R+,A) satisfies |Xi(t)−Xj(t)| > r for t>0 and i 6= j;

• (Lij(t), t>0)i,j∈N is a family of non-decreasing R+-valued continuous processes satisfying :

Lij(0) = 0, Lij ≡ Lji and Lij(t) =
∫ t

0
1I|Xi(s)−Xj(s)|=r dLij(s), Lii ≡ 0.

A solution of the system (E) with initial condition x ∈ A is a family (Xx
i (t), Lxij(t), t>0, i, j ∈ N)

of processes such that equation (E) is satisfied with X(0) = x.

Theorem 2.5 The stochastic equation (E) admits a solution with values in A for any determinis-
tic initial configuration which belongs to the set A ⊂ A defined by A = {x ∈ A : P (Ωx

0 ∩Ωx
1) = 1}

(sets Ωx
0 and Ωx

1 are given in (8) and (9) ). Moreover if the initial configuration is random with
distribution µ ∈ G(z) for some z > 0 and µ(A) = 1, then this solution is time-reversible, that is
its law is invariant with respect to the time reversal.

Remark 2.6 : The solution of equation (E) is unique as element of a set of regular paths
C ⊂ C(R+,A). See proposition 5.4 of [6] for details.

The construction of a solution for (E) when the initial condition is a fixed deterministic con-
figuration is given in section 3, Proposition 3.1. The reversibility for an initial Gibbs measure is
proven at the beginning of section 4, in Proposition 4.1.

We are now ready to state the main result of this paper.

Theorem 2.7 Suppose that µ is a probability measure on A with µ(A) = 1. Furthermore, suppose
that for every Λ compact subset of Rd and µ-almost all η, µ(.|BΛc)(η) is absolutely continuous
with respect to πΛ and its density uΛ(.|ηΛc) has the following differentiability property :

∀ξ ∈ AΛ, the map x 7→ uΛ(xξ|ηΛc) is C1 on ΛrB(ξηΛc , r) and its derivative

∇uΛ(xξ|ηΛc) verifies
∫
A

∫
AΛ

sup
x∈ΛrB(ξηΛc ,r)

|∇uΛ(xξ|ηΛc)| πΛ(dξ)µ(dη) < +∞ (5)

If µ is an equilibrium measure for the gradient system (E) in the sense that the Detailed Balance
Equation (15) holds under µ, then µ is a canonical Gibbs measure in CG.
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The conditions on µ in Theorem 2.7 look relatively strong, but they are physically natural in
the following sense :

• As remarked by Lang ([15], Bemerkung 4) and by Georgii ([10] page 42), the finite-volume
projections of any ”reasonable” equilibrium measure should be absolutely continuous with
respect to the (finite-volume) Poisson point process. Indeed, it seems well-known among
physicists that equilibrium measures are of Gibbsian nature with respect to an unknown
potential (to be identified). The absolute continuity of the finite volume projections of µ is
a corollary of our assumptions :∫
A
f(ηΛ)µ(dη) =

∫
A

∫
AΛ

f(ξ)uΛ(ξ|ηΛc)πΛ(dξ)µ(dη) =
∫
AΛ

f(ξ)
(∫

A
uΛ(ξ|ηΛc)µ(dη)

)
πΛ(dξ).

One can interpret Theorem 2.7 as the identification of the unknown potential associated
with any equilibrium measure.

• Furthermore, the existence of local conditional densities uΛ implies that the support of the
initial measure µ does not contain pathological configurations like those with collisions, as
proved in Lemma 2.8. In particular, the measure µ does not carry any closest packing
configuration. Anyway, it is clear that measures carrying closest packing configurations
cannot be equilibrium measures for a random dynamics containing a Brownian oscillation
like equation (E).

Lemma 2.8 Let µ be a Probability measure on M. Suppose that for every Λ compact subset of Rd

and µ-almost all η, µ(.|BΛc)(η) is absolutely continuous with respect to πΛ with density uΛ(.|ηΛc).
Then

µ
(
{γ ∈M : ∃i, j, |γi − γj | = r}

)
= 0.

Proof We first remark that

{γ ∈M : ∃i, j, |γi − γj | = r} =
+∞⋃
n=1

{γ ∈M : ∃i, j, |γi − γj | = r and |γi|6n, |γj |6n};

so we just have to prove that for any compact set Λ ⊂ Rd we have µ(c(Λ)) = 0 where c(Λ) ⊂M
is the set of all configurations which contain a collision in Λ : c(Λ) = {γ ∈ M : ∃i, j, |γi − γj | =
r with γi ∈ Λ and γj ∈ Λ}. By local absolute continuity of µ with respect to π we have :

µ(c(Λ)) =
∫
M

∫
MΛ

1Ic(Λ)(γ) uΛ(γ|ηΛc) πΛ(dγ)µ(dη).

Thus we only have to prove that πΛ(c(Λ)) = 0. This is straightforward since Lebesgue measure
in Rd does not carry any finite union of hyperplanes :

πΛ(c(Λ)) = e−|Λ|
+∞∑
k=2

1
k!

∫
Λk

1I{∃i,j,|xi−xj |=r}(x1, · · · , xk) dx1 · · · dxk = 0

�

3 Construction of a strong solution

The solution of (E) will be constructed as a limit of approximating processes (X l)l∈N∗ by penaliza-
tion. In [5] and [7] we did it in a reversible framework. Here we need an explicit contruction of the
set of allowed initial configurations and a pathwise construction in a non-reversible framework.
Since the proofs are very technical, we only present a squetch of the construction and refer the
reader who wants more details to [6].
A visualization of the approximating processes moving in R2 may be found at :
math.univ-lille1.fr/~fradon
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3.1 Approximating processes

In this whole subsection, l ∈ N∗ is fixed. To simplify we restrict the study of the paths on the
time interval [0, 1]. It is obvious that all the results in the sequel hold true on any time interval
[0, T ], T>1, up to a change of constants.

We construct the approximating process X l in order that it “essentially” stays in the bounded
cube Λl = [−l, l]d (in a sense which will be clear soon). To obtain such a behavior, we introduce
in the equation (E) a supplementary gradient drift ∇ψl,η which vanishes in a subset of Λl and is
repulsive outside of Λl.

More precisely, for any allowed configuration η ∈ A which support is disjoint to Λl, we fix a
R+-valued function ψl,η on Rd which is C2 with bounded derivatives and vanishes on each (and
only on) y ∈ Λl such that yη is an allowed configuration, that is

ψl,η(y) = 0 ⇔ y ∈ Λl = [−l, l]d and yη ∈ A ⇔ y ∈ Λl = [−l, l]d and d(y, η)>r.

We extend the definition of ψl,η to any configuration η ∈ A by : ψl,η = ψ
l,ηΛc

l . We also choose
the family (ψl,η)l such that, for every η ∈ A,∑

l∈N∗

∫
Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy 6 1. (6)

For η ∈ A and n ∈ N∗, let us now define the n-dimensional stochastic differential equation :

(E l,ηn )



∀i ∈ {1, . . . , n}, for 0 ≤ t ≤ 1,

dXi(t) = dWi(t)−
1
2

( ∑
j=1,...,n

∇ϕ(Xi(t)−Xj(t)) +
∑

j:ηj∈Λc

∇ϕ(Xi(t)− ηj)
)
dt

− 1
2
∇ψl,η(Xi(t))dt+

∑
j=1,...,n

(Xi(t)−Xj(t))dLij(t)

with Lij ≡ Lji for all i and j and Lij(t) =
∫ t
0 1I|Xi(s)−Xj(s)|=r dLij(s). (E l,ηn ) is a n-dimensional

stochastic differential equation reflected in A ∩ (Rd)n with gradient drift −1
2∇β

l,η
n where

βl,ηn (x1, . . . , xn) =
∑

i=1,...,n

(
ψl,η(xi) +

1
2

∑
j=1,...,n
j 6=i

ϕ(xi − xj) +
∑

j:ηj∈Λc

ϕ(xi − ηj)
)
. (7)

Since the drift −1
2∇β

l,η
n is bounded and Lipschitz continuous, (E l,ηn ) admits a unique strong solu-

tion for each initial n-point configuration x ∈ A ∩ (Rd)n (see thorem 5.1 of [24]). We denote this
solution by X l,η,n(x, ·). For a general initial configuration x ∈ A, we extend the above process as
follows :

X l,x(·) = X l,η,n(xΛl
, ·)xΛc

l

where η = xΛc
l

and n = Card(x ∩ Λl). It is an M-valued (not necessarily A-valued) process with
initial configuration x. Particles which are initially in Λl move like the (E l,ηn )-dynamics and the
other ones stay fixed outside Λl.

3.2 Convergence for a deterministic initial condition

In this section, we construct the limit of (X l,x)l when l→ +∞ for convenient initial configurations
x. This is possible except for certain so-called bad paths ω : they are paths such that at least a
particle interacts with a great number of other ones, either because it moves very fast, or because
it belongs to a large chain of interacting particles. So, for m ∈ N, a ≥ 1 and ε > 0, the set of
“Bad trajectories” B(m,a, ε) is the union of two sets :

B(m,a, ε) = B̃(m,a, ε) ∪ ˜̃B(m, ε).
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The set B̃(m,a, ε) contains paths for which a particle i has a high modulus of continuity w defined

as usual by w(Xi,
1
m

) = sup
06s,t61:|t−s|< 1

m

|Xi(t)−Xi(s)| :

B̃(m,a, ε) =
{
X ∈ C([0, 1],A) : ∃i, w(Xi,

1
m

) >
ε

4
and ∃t61, |Xi(t)|6a+ 2m2

}
.

The set ˜̃B(m, ε) contains paths for which at some time a large chain of particles interacts :

˜̃B(m, ε) =

X ∈ C([0, 1],A) :

∃k ∈ {0, . . . ,m− 1},∃i1, · · · , in ∈ N∗,

|Xi2(
k

m
)−Xi1(

k

m
)| ≤ R+ ε, · · · , |Xin(

k

m
)−Xin−1(

k

m
)| ≤ R+ ε

and |Xin(
k

m
)−Xi1(

k

m
)| > m−R− ε

 .

For x ∈ A let us define the set Ωx
0 as follows :

Ωx
0 = lim inf

{ε: 1
ε
∈N}

⋂
ρ∈N∗

lim inf
l→+∞

{
X l,x 6∈ B (m(ρ, l), ρ+m(ρ, l), ε)

}
∩
{
X l+1,x 6∈ B (m(ρ, l), ρ+m(ρ, l), ε)

}
(8)

where m(ρ, l) = [
√
l − ρ− r]− 1.

We also define the set of paths :

Ωx
1 =

⋂
{ε: 1

ε
∈N}

lim inf
ρ→+∞

lim sup
l→+∞

{
X l,x 6∈ B̃ (ρ,R, ε)

}
. (9)

Proposition 3.1 For every x ∈ A, for every ω in Ωx
0 and every i ∈ N∗, the sequence (X l,x

i (ω, t), Ll,xij (ω, t), j ∈
N, t ∈ [0, 1])l∈N∗ of elements of C([0, 1],Rd×RN

+) converges to a limit denoted by (X∞,x
i (ω, t), L∞,x

ij (ω, t), j ∈
N, t ∈ [0, 1]).
Moreover, if ω ∈ Ωx

0 ∩ Ωx
1 , (X∞,x(ω, .), L∞,x

ij (ω, .)) satisfies equation (E) with X∞,x(ω, 0) = x.

Thus, for any x ∈ A = {ξ ∈ A : P (Ωξ
0 ∩ Ωξ

1) = 1}, the process (X∞,x, L∞,x
ij ) is a solution of (E)

with initial condition x.

Proof See sections 4 and 5 of [6]. �

Remark that for any x ∈ A, the convergence of the sequence (X l,x)l towards X∞,x takes place
in C(R+,M).

4 Reversible measures

We first present the already known important fact that Gibbs measures are reversible.

4.1 Canonical Gibbs measures in G(z) are reversible for (E)

Proposition 4.1 The stochastic equation (E) admits a time-reversible solution with values in A
for any initial Gibbs distribution µ ∈ G(z) with µ(A) = 1. Thus any canonical Gibbs measure
µ ∈ CG with support included in A is reversible too.

Proof
When the initial measure µ is Gibbsian, the solution of (E) is approximated by reversible finite-
dimensional processes solution of (E l,ηn ). This implies its reversibility (see proposition 5.5 of [6]
for a detailed proof).

When the initial measure is canonical Gibbs, it is reversible as a mixing of Gibbs measures, which
are reversible. �

9



In the next proposition, we claim the existence of Gibbs measures with support included in
the space of allowed configurations A.

Proposition 4.2 Let zc be the following value of the activity : zc =
exp(2Nϕ)

(Rd − rd)|B(0, 1)|
. Any

Gibbs measure µ ∈ G(z) with 0 < z < zc has its support included in A.

Proof See [6] proposition 5.1. �

Remark 4.3 : The critical value zc given here appears for technical reasons in a percolation
type estimate. For z ≥ zc Gibbs measures of G(z) are also reversible (see [7] Proposition 3.1) but
we are not able to give an explicit simple description like A of their supports .

4.2 The infinitesimal generator A and the spaces of test functions

Let us first introduce some definitions of differentiability for functions defined on the space of
configurations M.

Definition 4.4 A function g on M is local if there exists a compact set K ⊂ Rd such that g(γ)
only depends on γ ∩K, i.e. ∀γ ∈M g(γ) = g(γK). Such a function is called K-local.
A local function g on M is called Ck if for any n ∈ N∗ the function defined on (Rd)n by

(γ1, · · · , γn) 7−→ g(
n∑
i=1

δγi) is Ck. For any γ ∈ M, Dxg(xγ) and D2
xxg(xγ) denote the first

and second derivatives of y 7→ g(yγ) at y = x.

Remark that any local C0 function is bounded and that any local C1 function has a bounded
derivative : sup

x∈Rd

sup
γ∈M

|Dxg(xγ)| < +∞.

Definition 4.5 T denotes the set of all local C2 functions on M.

Since we study a dynamics with reflection on the boundary of the set of allowed configurations,
it is natural to use the following set of test functions.

Definition 4.6 Let T0 ⊂ T denote the set of functions on M whose first derivative is orthogonal
to the normal vector on the boundary of the set A of allowed configurations, that is :

T0 =
{
f : M−→ R s.t. f is local, C2 and
for each γ ∈M, if γi, γj ∈ γ satisfy |γi − γj | = r then Dγif(γ).(γi − γj) = 0

}
(10)

Let us consider a fixed test function f ∈ T and the strong solution X∞ of equation (E)
constructed in section 3. The Itô Formula holds for X = X∞ (see e.g. [17], Theorem 27.2) :

For t ∈ R+,

f(X(t)) = f(X(0)) +
∑
i∈N

∫ t

0
DXi(s)f(X(s)) dWi(s)

− 1
2

∑
i∈N

∫ t

0
DXi(s)f(X(s)).

∑
j∈N

∇ϕ(Xi(s)−Xj(s))ds

+
∑
i∈N

∑
j∈N

∫ t

0
DXi(s)f(X(s)).(Xi(s)−Xj(s))dLij(s)

+
1
2

∑
i∈N

∫ t

0
Tr(D2

Xi(s)Xi(s)
f(X(s))) ds

10



If f ∈ T0, the reflection term vanishes :∑
i∈N

∑
j∈N

∫ t

0
DXi(s)f(X(s)).(Xi(s)−Xj(s))dLij(s) = 0.

Since f is local and f ’s first derivative is bounded,
∑

i∈N
∫ t
0 |DXi(s)f(X(s))|2 ds is bounded in-

dependently of the initial condition X(0) and thus,
∑

i∈N
∫ t
0 DXi(s)f(X(s)) dWi(s) is a square-

integrable martingale. Consequently, for each function f ∈ T0,

f(X(t))− f(X(0))−
∫ t

0
Af(X(s)) ds is a square-integrable martingale, (11)

where A, called the infinitesimal generator associated to the stochastic differential equation (E),
is given by

Af(γ) =
1
2

∑
i∈N

(
Tr(D2

γiγi
f(γ))−Dγif(γ).

∑
j∈N

∇ϕ(γi − γj)
)

(12)

=
1
2

∫
Rd

(
Tr(D2

xxf(γ))−Dxf(γ).(∇ϕ ∗ γ)(x)
)
γ(dx)

with (∇ϕ ∗ γ)(x) =
∫

Rd ∇ϕ(x− y) γ(dy).

Remark 4.7 : For any g ∈ T the function Ag is still local. More precisely, if g is Λ-local
then Ag is B(Λ, R)-local :

Ag(η) = −1
2

∫ ∫
g(η).∇ϕ(x− y)η(dy) η(dx) +

1
2

∫
TrD2

xxg(η) η(dx)

= −1
2

∫
Λ

∫
B(Λ,R)

Dxg(ηΛ).∇ϕ(x− y)η(dy) η(dx) +
1
2

∫
Λ

TrD2
xxg(ηΛ) η(dx)

=
1
2

∫
Λ

(
−Dxg(ηΛ).∇ϕ ∗ ηB(Λ,R)(x) + TrD2

xxg(ηΛ)
)
η(dx)

= Ag(ηB(Λ,R)).

Let us now verify the foundamental symmetry property of the infinitesimal generator A under
any measure µ that is reversible for the gradient-system (E). We test it on T0, which is a class
of smooth functions for which Ito formula is particularly simple. Anyway, T0 is too small to
generate all functions on which A is symmetrical. For this reason, the symmetry property (13) is
a necessary but not a sufficient condition for µ to be time-reversible.

Proposition 4.8 Let µ be a Probability measure on A. If the solution of the gradient-system (E)
with µ as initial distribution is time-reversible, then the infinitesimal generator A is symmetrical
on T0 :

∀f, g ∈ T0

∫
M
f Ag dµ =

∫
M
g Af dµ. (13)

Proof The time-reversibility of the process X solution of (E) implies that, for any time t > 0 and
any f, g ∈ T0,

E
(
g(X0)f(Xt)− g(Xt)f(X0)

)
= 0.

But, applying the Itô Formula and the martingale property (11) one gets

E
(
g(X0)f(Xt)− g(Xt)f(X0)

)
= E

(
g(X0)

∫ t

0
Af(Xs)ds− f(X0)

∫ t

0
Ag(Xs)ds

)
=

∫ t

0
E
(
g(X0)Af(Xs)− f(X0)Ag(Xs)

)
ds

= 0.

11



Since the paths t 7→ Xt are continuous at time 0 and Af and Ag are bounded C0 functions when
f and g belong to T0, one obtains

lim
t→0

1
t

∫ t

0
E
(
g(X0)Af(Xs)− f(X0)Ag(Xs)

)
ds = E

(
g(X0)Af(X0)− f(X0)Ag(X0)

)
=

∫
M
g Af dµ−

∫
M
f Ag dµ

= 0.

�

In a finite-dimensional context, the Symmetry Property (13) under µ would be strong enough to
characterize µ as a Gibbs measure. But the configuration space we are dealing with is infinite-
dimensional. Thus, a set of localizing functions will play a determining role : the security functions
introduced in the next subsection. They allow to control the collisions between particles in a
bounded region K of the space Rd. But they do not belong to T0 because their derivative on the
boundary of K is not orthogonal to the normal vector, as required in (10). Anyway, the symmetry
of A under µ as stated in (15) (on products with such functions) is a sufficient condition for µ to
be reversible.
In the next subsection, we introduce security functions and describe their important properties.

4.3 The security functions

To localize (13), we define a family of security functions used as ”collision detectors” : they vanish
for configurations containing, in a bounded region, balls which are too close.

Definition 4.9 For any fixed compact set K ⊂ Rd and for ε > 0, we define the function SεK on
M by

SεK(γ) = 1̃I]−∞,0]

∑
i∈N

1̃IK(γi)
(
1−

∏
j∈N

1̃I[2,+∞[(
|γi − γj |2 − r2

ε2
)
) (14)

where 1̃I]−∞,0] is a C∞ non-increasing function with value 1 on ] −∞, 0] and 0 on [1,+∞[, and
where 1̃IK is a C∞ function from Rd to [0, 1] with value 1 on K and value 0 on the set RdrB(K, 1).
Here 1̃I[2,+∞[ denotes some fixed C∞ non-decreasing fonction vanishing on ] −∞, 1] with value 1
on [2,+∞[.

Remark that the functions SεK are elements of T . Indeed, they are K-local with K := B(K, 1 +√
r2 + 2ε2) and they are C∞ on M. However, SεK does not belong to T0, since its derivative

DγiS
ε
K(γ) is not orthogonal to γi − γj for γi ∈ B(K, 1)rK and |γi − γj | = r. Let us now describe

some characteristic properties of these functions.

Lemma 4.10 The function SεK vanishes on the following set of configurations :

{γ : ∃γi ∈ K,∃γj 6= γi with |γi − γj |2 ≤ r2 + ε2},

and is equal to 1 on the set of configurations :

{γ : ∀γi ∈ B(K, 1),∀γj 6= γi, |γi − γj |2 ≥ r2 + 2ε2}.

Moreover, the function SεK increases as ε decreases and

lim
ε↘0

SεK(γ) = 1 µ-a.s.

for any measure µ such that µ({γ : ∃i, j, |γi − γj | = r}) = 0.

12



Proof If the center of a particle γi ∈ γ is in K (hence 1̃IK(γi) = 1) and at least one other particle

of γ is at a distance smaller than
√
r2 + ε2 from γi (hence

∏
j∈N

1̃I[2,+∞[(
|γi − γj |2 − r2

ε2
) = 0), then

in the definition (14) the sum is greater than 1 and SεK(γ) = 0.

On the other side, suppose a particle γi in γ is at a distance greater than
√
r2 + 2ε2 from every

other particle; then one has
∏
j∈N

1̃I[2,+∞[(
|γi − γj |2 − r2

ε2
) = 1 . If this holds for any γi ∈ B(K, 1),

that is for each γi such that 1̃IK(γi) 6= 0, then the sum in (14) vanishes and SεK(γ) = 1.

Moreover, for each γ ∈ A, the pseudo-indicator function 1̃I[2,+∞[(
|γi − γj |2 − r2

ε2
) increases as ε

decreases to 0 to the indicator function 1I|γi−γj |6=r, thus

SεK(γ) ↗ 1̃I]−∞,0]

(∑
i∈N

1̃IK(γi) 1I{∃j,|γi−γj |=r}

)

For measures µ such that µ({γ : ∃i, j, |γi − γj | = r}) = 0, this function is µ-a.s. equal to 1 and
consequently

lim
ε↘0

↑ SεK(γ) = 1 µ-a.s.

�

4.4 The Detailed Balance Equation

For a Λ-local function f defined on M, we say that the compact set K ⊂ Rd covers f if B(Λ, R) ⊂
K and denote by fεK the product fSεK . Such functions play from now on the role of test functions.

Definition 4.11 A Probability measure µ on A is called an equilibrium measure for equation (E)
if the infinitesimal generator A is locally µ-symmetric on T in the following sense :

∀f, g ∈ T , ∀K compact set covering f and g, ∀ε > 0
∫
M
fεK AgεK dµ =

∫
M
gεK AfεK dµ. (15)

Equation (15) is called Detailed Balance Equation.

Remark 4.12 : We will prove in Propositions 5.1 and 5.3 that (15) is a sufficient condition for
µ to be reversible. We have already proved in Proposition 4.8 that (13) is a necessary condition
for µ to be reversible. Clearly, the difference between conditions (13) and (15) is the set of test
functions on which the symmetry of A is satisfied. However, since SεK 6∈ T0, both conditions are
not a priori equivalent.

Anyway, (15) is a reasonable equilibrium condition in the sense that Gibbs measures satisfy
it, as the next proposition claims.

Proposition 4.13 Any canonical Gibbs measure µ ∈ CG with support included in A satisfies
Detailed Balance Equation (15).

Proof Let us first recall the property (4) : any canonical Gibbs measure µ has the representation

µ =
∫

R+

µz θ(dz) with µz ∈ G(z) for each z ∈ R+,

that is, is a mixture of Gibbs measures. As a consequence for f, g ∈ T0 and K a compact set
covering f and g, ∫

M
fεK AgεK dµ =

∫
R+

∫
M
fεK AgεK dµz θ(dz)
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and the Detailed Balance Equation will hold for each canonical Gibbs measure as soon as it holds
for each µz ∈ G(z).

We now fix µ ∈ G(z), f, g ∈ T , K covering f and g and ε > 0. We want to prove that∫
M fεK AgεK dµ is symmetric in f and g. By definition (12) of A∫

M
fSεK A(gSεK) dµ

=
∫
M
f(SεK)2Ag dµ+

∫
M
fg SεK ASεK dµ+

∫
M
f(η)SεK(η)

∫
Dxg(η).DxS

ε
K(η) η(dx) µ(dη)

=: I1 + I2 + I3.

The second integral I2 is symmetric in f and g. We now use the assumption µ ∈ G(z) to transform
the first integral term I1. Recall that Ag is K-local, since K covers g.

I1 =
∫
A
f(ηK)(SεK)2(η)Ag(ηK)µ(dη)

=
∫
A

∫
AK

f(ξ)(SεK)2(ξηKc)Ag(ξ)e−EK(ξ|ηKc )πzK(dξ)µ(dη)

=
1
2

∫
A

∫
AK

∫
K
f(ξ)(SεK)2(ξηKc) TrD2

xxg(ξ) e
−EK(ξ|ηKc ) ξ(dx) πzK(dξ) µ(dη)

− 1
2

∫
A

∫
AK

∫
K
f(ξ)(SεK)2(ξηKc) Dxg(ξ).(∇ϕ ∗ ξ)(x) e−EK(ξ|ηKc ) ξ(dx) πzK(dξ) µ(dη)

= J1 + J2

To transform J1 we use the well known fact that the Campbell measure of the Poisson Process
πzK is equal to the product measure z dx|K × πzK (see [16]), that is, for any regular function F on
K ×M, ∫

M

∫
K
F (x, ξ)1IA(ξ) ξ(dx)πzK(dξ) = z

∫
M

∫
K
F (x, xξ)1IA(xξ) dxπzK(dξ).

So J1 becomes :

J1 =
1
2

∫
A

∫
AK

∫
K
f(xξ)(SεK)2(xξηKc) TrD2

xxg(xξ) e
−EK(xξ|ηKc ) 1IA(xξ) z dx πzK(dξ) µ(dη)

=
z

2

∫
A

∫
AK

∫
KrB(ξ,r)

f(xξ)(SεK)2(xξηKc) TrD2
xxg(xξ) e

−EK(xξ|ηKc ) dx πzK(dξ) µ(dη)

Remark that x 7→ SεK(xξηKc) vanishes on the boundary of B(ξ, r) and that x 7→ Dxg(xξ) vanishes
on the boundary of K; after integrating by parts, J1 becomes :

J1 = − z

2

∫
A

∫
AK

∫
KrB(ξ,r)

Dx

(
f(xξ)(SεK)2(xξηKc) e−EK(xξ|ηKc )

)
.Dxg(xξ) dx πzK(dξ) µ(dη).

We now expand the derivative. Remark thatDxEK(xξ|ηKc) is equal to (∇ϕ∗ξ)(x)+(∇ϕ∗ηKc)(x).
Moreover (∇ϕ ∗ ηKc)(x) = 0 for x 6∈ B(Kc, R) and Dxg(ξ) = 0 for x ∈ B(Kc, R), so that J1 is
equal to :

J1 = −z
2

∫
A

∫
AK

∫
K

1IA(xξ) (SεK)2(xξηKc) Dxf(xξ).Dxg(xξ) e−EK(xξ|ηKc ) dx πzK(dξ) µ(dη)

−z
2

∫
A

∫
AK

∫
K

1IA(xξ) f(xξ) Dx(SεK)2(xξηKc).Dxg(xξ) e−EK(xξ|ηKc ) dx πzK(dξ) µ(dη)

+
z

2

∫
A

∫
AK

∫
K

1IA(xξ) f(xξ) (SεK)2(xξηKc) (∇ϕ ∗ ξ)(x).Dxg(xξ) e−EK(xξ|ηKc ) dx πzK(dξ) µ(dη)
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Using again the Campbell measure of πzK , we remark that the second integral term is exactly the
opposite of I3 and that the last integral term is also the opposite of J2. So we finally obtain :∫

M
fSεK A(gSεK) dµ

= −1
2

∫
A

∫
AK

∫
K

(SεK)2(ξηKc) Dxf(ξ).Dxg(ξ) e−EK(ξ|ηKc ) ξ(dx) πzK(dξ) µ(dη) +
∫
M
fg SεK ASεK dµ

= −1
2

∫
M

∫
Rd

(SεK)2(η) Dxf(η).Dxg(η) η(dx) µ(dη) +
∫
M
fg SεK ASεK dµ

This shows the desired symmetry in (f, g). �

5 Detailed Balance Equation, Campbell measures and canonical
Gibbs measures

In this section we first prove that any measure satisfying the Detailed Balance Equation (15) also
obeys an integral equation exhibiting a symmetry property of the associated Campbell measure.
In the second subsection we conclude the proof of the main theorem 2.7 by proving that such a
measure is necessarily canonical Gibbs associated to the appropriate potential.

5.1 From the Detailed Balance Equation to Campbell measures

Proposition 5.1 Let µ be a Probability measure on A with support included in A. Suppose
that for every ∆ compact subset of Rd and µ-almost all η, µ(.|B∆c)(η) has a density u∆(.|η∆c)
with respect to π∆ which satisfies assumption (5). If the detailed balance equation (15) is satisfied
under µ, then for any positive measurable local function F on Rd×Rd×A, the following symmetry
property holds : ∫

A

∫
Rd

∫
Rd

e−E(y|ηrx) F (x, y, ηrx) dy η(dx)µ(dη)

=
∫
A

∫
Rd

∫
Rd

e−E(y|ηrx) F (y, x, ηrx) dy η(dx)µ(dη). (16)

Proof Step 1 : Reduction of (15) to a simpler symmetry property
By definition of T , we can take as elements f, g ∈ T the following functions: f = f̃f3 and g = g̃f3.
Functions f3, f̃ , g̃ will be precisely described in Step 3. Due to the definition of the infinitesimal
generator A, we have :

A(gSεK)(η) = (f3S
ε
K)(η)Ag̃(η) + g̃(η)A(f3S

ε
K)(η) +

∫
Dxg̃(η).Dx(f3S

ε
K)(η) η(dx). (17)

So, the left hand side of (15), which is symmetrical in the functions f, g (and thus in the functions
f̃ , g̃) is the sum of the three following terms I1, I2 and I3:

I1 :=
∫
f̃(η)(f3S

ε
K)2(η)Ag̃(η)µ(dη)

I2 :=
∫
g̃(η)f̃(η)(f3S

ε
K)(η)A(f3S

ε
K)(η)µ(dη)

I3 :=
∫
f̃(η)(f3S

ε
K)(η)

∫
Dx(f3S

ε
K)(η).Dxg̃(η) η(dx)µ(dη).

The integral I2 being symmetric in f̃ and g̃, this implies that the sum I1 + I3 remains unchanged
if f̃ and g̃ are interchanged.
Step 2 : Analysis of I1 + I3
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We consider functions f̃ and g̃ which are Λ-local for some bounded subset Λ with B(Λ, R) ⊂ ∆ ⊂
K and remark that Dxg̃ and D2

xxg̃ are Λ-local too and Ag̃ is ∆-local (since B(Λ, R) ⊂ ∆). We
also choose f3 C-local with C∩∆ = ∅ and B(C,R) ⊂ K. Thus, decomposing η inside and outside
of ∆, one has

I1 =
∫
A
f̃(η∆)f2

3 (η∆c)(SεK)2(η∆η∆c)Ag̃(η∆)µ(dη)

=
∫
A
f2
3 (η∆c)

∫
A∆

f̃(ξ)(SεK)2(ξη∆c)Ag̃(ξ)u∆(ξ|η∆c)π∆(dξ)µ(dη)

=:
∫
A
f2
3 (η∆c)J(η)µ(dη).

To transform the integral term J(η) we now use the Campbell measure of the Poisson Process
π∆. Then, since ∇ϕ ∗ (xξ)(x) = ∇ϕ ∗ ξ(x) +∇ϕ(0) = ∇ϕ ∗ ξ(x),

J(η) =
1
2

∫
A∆

∫
∆
f̃(ξ)(SεK)2(ξη∆c)u∆(ξ|η∆c)

(
−Dxg̃(ξΛ).∇ϕ ∗ ξ(x) + TrD2

xxg̃(ξΛ)
)
ξ(dx)π∆(dξ)

=
1
2

∫
M

∫
∆
f̃(xξ)(SεK)2(xξη∆c)u∆(xξ|η∆c)

(
−Dxg̃(xξΛ).∇ϕ∗ξ(x)+TrD2

xxg̃(xξΛ)
)
1IA(xξ) dxπ∆(dξ).

We recognize under the Lebesgue integral a divergence term :

∀x ∈ ∆,
(
−Dxg̃(xξ).∇ϕ∗ξ(x)+TrD2

xxg̃(xξ)
)
1IA(xξ) = 1I∆rB(ξ,r)(x) e

ϕ∗ξ(x)∇.(Dxg̃(xξ)e−ϕ∗ξ(x))

and then, thanks to the regularity assumptions (5) on the function u∆, we get by partial integration

J(η) = −1
2

∫
M

∫
∆rB(ξ,r)

∇
(
f̃(xξ)(SεK)2(xξη∆c)u∆(xξ|η∆c)eϕ∗ξ(x)

)
.Dxg̃(xξ)e−ϕ∗ξ(x) 1IA(ξ)dxπ∆(dξ).

(Notice that the boundary terms vanish : on the exterior boundary of ∆, Dxg̃(xξ) = 0 since Dxg̃
is Λ-local, Λ ⊂ ∆, and on the interior boundary ∂B(ξ, r) = {x ∈ Rd such that ∃ξi : |ξi − x| =
r}, SεK(xξη∆c) = 0.) So, J(η) = J1(η) + J2(η) + J3(η) where

J1(η) := −1
2

∫
M

∫
∆rB(ξ,r)

Dxf̃(xξ).Dxg̃(xξ)(SεK)2(xξη∆c)u∆(xξ|η∆c)1IA(ξ) dxπ∆(dξ)

J2(η) := −1
2

∫
A

∫
∆rB(ξ,r)

f̃(xξ)(SεK)2(xξη∆c)∇
(
u∆(xξ|η∆c)eϕ∗ξ(x)

)
.Dxg̃(xξ)e−ϕ∗ξ(x) dxπ∆(dξ)

J3(η) := −1
2

∫
A

∫
∆rB(ξ,r)

f̃(xξ)u∆(xξ|η∆c)Dx

(
(SεK)2

)
(xξη∆c).Dxg̃(xξ) dxπ∆(dξ).

The integral term J1 is symmetric in f̃ and g̃.
Using again the Campbell measure of π∆, the integral term J3 becomes

J3(η) = −1
2

∫
A∆

∫
∆
f̃(ξ)u∆(ξ|η∆c)Dx

(
(SεK)2

)
(ξη∆c).Dxg̃(ξ) ξ(dx)π∆(dξ),

in such a way that∫
A
f2
3 (η∆c)J3(η)µ(dη) = −1

2

∫
A
f2
3 (η∆c)f̃(η∆)

∫
∆
Dx

(
(SεK)2

)
(η).Dxg̃(η∆) η∆(dx)µ(dη)

= −
∫
A
f2
3 (η∆c)f̃(η∆)SεK(η)

∫
∆
Dx(SεK)(η).Dxg̃(η∆) η∆(dx)µ(dη)

= −I3 +
∫
A
f3(η∆c)f̃(η∆)(SεK)2(η)

∫
∆
Dxf3(η∆c).Dxg̃(η∆) η∆(dx)µ(dη)

= −I3
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since Dxf3(η∆c).Dxg̃(η∆) ≡ 0.
Thus the symmetry of I1 + I3 in f̃ and g̃ is equivalent to the symmetry of

∫
A f

2
3 (η∆c)J2(η)µ(dη).

Using once more the form of the Campbell measure of π∆, this means∫
A
f2
3 (η∆c)

∫
A

∫
∆
f̃(ξ)(SεK)2(ξη∆c)∇

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
.Dxg̃(ξ)e−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη)

=
∫
A
f2
3 (η∆c)

∫
A

∫
∆
g̃(ξ)(SεK)2(ξη∆c)∇

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
.Dxf̃(ξ)e−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη).

For g̃ = f4f̃ , this equality becomes∫
A

∫
A∆

(SεK)2(ξη∆c) f2
3 (η∆c)f̃2(ξ)

∫
∆
∇
(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
.Dxf4(ξ)e−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη) = 0.

At this stage, we would like to let disappear the function SεK under the integral by taking the limit
for ε→ 0. We may take the limit under the integral, as the following technical lemma claims.

Lemma 5.2 Let m be a positive measure on some measurable space E. Let g be a real-valued
measurable function on E and (gn)n be a sequence of positive functions on E. If one of the
following assumptions is satisfied
(A1) (gn)n is bounded increasing and g ∈ L1(m)
(A2) (gn)n is decreasing
then

∀n ∈ N,
∫
E
gn g dm = 0 =⇒

∫
E

lim
n
gn g dm = 0.

Proof Remark that
∫
E gn g+ dm =

∫
E gn g− dm and apply monotone convergence theorem. �

Apply Lemma 5.2 to E = A∆ × A∆c and to the increasing sequence gn = (S1/n
K )2. One can

prove similarly to Lemma 2.8 that π∆ × µ∆c({γ : ∃i, j, |γi − γj | = r}) = 0, and thus by Lemma
4.10 one get limn S

1/n
K = 1 a.s.. Since f3, f̃ , D.f4 are bounded functions and, by assumption (5),∫

∆∇
(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
ξ(dx) is π∆ × µ∆c-integrable, then (A1) holds and we obtain∫

A
f2
3 (η∆c)

∫
A∆

∫
∆
f̃2(ξ)∇

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
.Dxf4(ξ)e−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη) = 0.

(18)
Step 3 : Form of the local conditional density u∆(.|η∆c)
To derive informations on the form of u∆ from the equation (18), we need to particularize the
class of test functions. We decompose f̃ and g̃ as follows:

f̃ = f1f2 and g̃ = f1f2f4.

The choice we now present for f1, f2, f4 is inspired by [10] Proposition 2.38, in which the author
analyzed the case of particles without hard core.

• functions f2 characterize the configuration inside of Λ: to each f2 is associated a C∞-function
ϕ2 on Rd with compact support Λ satisfying B(Λ, R) ⊂ ∆ such that

f2(ξ) = exp
(
−
∫

Λ
ϕ2(x)ξ(dx)

)
= f2(ξΛ).

• functions f3 characterize the configuration outside ∆: to each f3, is associated a C∞-function
ϕ3 on Rd with compact support C ⊂ ∆c such that

f3(η) = exp
(
−
∫
C
ϕ3(x)η(dx)

)
= f3(η∆c).
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• functions f1 vanish if some ball of the configuration is too close to the boundary of a fixed
bounded domain V with B(V,R) ⊂ Λ :

f1(ξ) = ψ1(−
∫

Λ
ϕδ1(x)ξ(dx)) = f1(ξΛ)

where ψ1 is a C∞ non-increasing function on R+ with values in [0, 1] satisfying ψ1(0) = 1
and ψ1(u) = 0 for u ≥ 1, and ϕδ1 is a C∞-function on Rd, δ-approximation of the indicator
function of the inner ε1-boundary of V , B(V c, ε1) ∩ V : ϕδ1(y) = 1 for y ∈ B(V c, ε1) ∩ V ,
ϕδ1(y) = 0 if d(y,B(V c, ε1) ∩ V ) ≥ δ > 0 and ϕδ1 decreases to 1IB(V c,ε1)∩V when δ ↘ 0.

• functions f4 have one directional derivative equal to a smooth approximation of the indicator
function of a compact interval:

f4(ξ) =
∫

Λ
ϕ4(x)ξ(dx)

where ϕ4(x) =
∫ xi

−∞ ϕ′4(u)du if x ∈ V \B(V, ε1) and ϕ4(x) = 0 if x 6∈ V for some i ∈ {1, . . . , d}.
Moreover ϕ′4 is a smooth approximation of the indicator function 1II , with I ⊂ R a compact
interval included in the projection of V along the i-coordinate.

To summerize, V ⊂ B(V,R) ⊂ Λ ⊂ B(Λ, R) ⊂ ∆ ⊂ ∆ ∪ C ⊂ ∆ ∪ B(C,R) ⊂ K, f1 and f2 are
Λ-local, f4 is V -local and f3 is C-local. Inserting the value of Dxf4 in the equation (18), we get∫
A
f2
3 (η∆c)

∫
A∆

f2
1 (ξ)f2

2 (ξ)
∫
V
∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
ϕ′4(xi)e

−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη) = 0.

Next, we let δ decrease towards 0, which implies that f1(ξ) decreases towards 1IξV ∩B(V c,ε1)=∅.
Remark that, for any x ∈ ξ, the following equality holds:

ϕ′4(xi)1IξV ∩B(V c,ε1)=∅ = 1II(xi)1IξV ∩B(V c,ε1)=∅.

Then we let decrease ε1 towards 0, so that 1IξV ∩B(V c,ε1)=∅ increases towards 1. Lemma 5.2 justifies
the inversion between integrals and limits, and then,∫

A
f2
3 (η∆c)

∫
A∆

f2
2 (ξ)

∫
V

1II(xi)∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
e−ϕ∗ξ(x) ξ(dx)π∆(dξ)µ(dη)

=
∫
A∆

f2
2 (ξ)

∫
V

1II(xi)
∫
A
f2
3 (η∆c)∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
e−ϕ∗ξ(x)µ(dη) ξ(dx)π∆(dξ)

=
∫
A∆

f2
2 (ξΛ)

∫
V

1II(xi)
∫
A
f2
3 (η∆c)∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
e−ϕ∗ξ(x)µ(dη) ξΛ(dx)πΛ(dξ)

= 0.

Since this holds for any function f2 in the class described above, this implies that, for πΛ-almost
all ξ and for any interval I with rational extremities∫

V
1II(xi)e−ϕ∗ξ(x)

∫
A
f2
3 (η∆c)∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
µ(dη) ξ(dx) = 0. (19)

For a fixed ξ and a fixed x in ξ, let us take I an interval containing only xi among the i-projections
of all points of ξ. Then (19) becomes∫

A
f2
3 (η∆c)∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
µ(dη) = 0,

for any x ∈ ξ and for πΛ-almost all ξ ∈ A. We can now let vary f3 in the class described above,
and obtain

∇i

(
u∆(x(ξrx)|η∆c)eϕ∗ξ(x)

)
= 0,
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for any i ∈ {1, . . . , d} and any x ∈ ξ, for πΛ-almost all ξ ∈ A and for µ-almost all η∆c . The last
equation means that there exists a function c on M such that

u∆(xξ|η∆c) = c(ξη∆c)e−ϕ∗ξ(x) = c(ξη∆c)e−E(x|ξ) (20)

for π∆-almost all xξ ∈ A∆ and µ-almost all η∆c .

Step 4 : Symmetry of some integral under the Campbell measure
Let us now consider the left hand side of equation (16) for a function F vanishing for x or y
outside a bounded Λ′ ⊂ Rd and Λ-local in η. Taking ∆ large enough so that B(Λ ∪ Λ′, R) ⊂ ∆
we obtain ∫

A

∫
Rd

∫
Rd

e−E(y|ηrx) F (x, y, ηrx) dy η(dx)µ(dη)

=
∫
A

∫
∆

∫
∆
e−E(y|η∆rx) F (x, y, η∆rx) dy η∆(dx)µ(dη)

=
∫
A

∫
A∆

∫
∆

∫
∆
e−E(y|ξrx) F (x, y, ξrx)u∆(ξ|η∆c) dy ξ(dx)π∆(dξ)µ(dη)

=
∫
A

∫
∆

∫
A∆

∫
∆
e−E(y|ξ) F (x, y, ξ)u∆(xξ|η∆c)1IA(xξ) dxπ∆(dξ) dy µ(dη)

=
∫
A

∫
∆

∫
A∆

∫
∆
e−E(y|ξ) F (x, y, ξ)c(ξη∆c)e−E(x|ξ) dxπ∆(dξ) dy µ(dη)

=
∫
A

∫
A∆

∫
∆

∫
∆
e−E(y|ξ) e−E(x|ξ) F (x, y, ξ)c(ξη∆c) dx dy π∆(dξ)µ(dη).

This last expression being symmetric in x and y, it is also equal to the right hand side of equation
(16).

�

5.2 Canonical Gibbs measures characterized by their Campbell measures

Proposition 5.3 Let µ be a Probability measure on A with support included in A. Suppose that
under the Campbell measure of µ the symmetry property (16) holds. Then µ is a canonical Gibbs
measure in CG.

Proof In [10] Proposition 2.29, the author proved this assertion only for a system without hard
core, that is when r, the radius of the balls, vanishes. We adapt here his arguments to the hard
core situation. Let F be any positive measurable local function on Rd × Rd × A. Applying
the symmetry equation (16) to the function (x, y, η) 7→ eE(x|η) F (y, x, η) 1IA(xη) (with the usual
convention +∞.0 = 0) we get∫

A

∫
Rd

∫
Rd

F (x, y, ηrx)1IA(y(ηrx)) dy η(dx)µ(dη)

=
∫
A

∫
Rd

∫
Rd

e−E(y|ηrx)+E(x|ηrx) F (y, x, ηrx) dy η(dx)µ(dη).

By induction, one proves similarly as in [10] that for any n ∈ N∗ and any positive measurable
local function G on M∩ (Rd)n ×M∩ (Rd)n ×A,∫

A

∫
A∩(Rd)n

∫
M∩(Rd)n

G(ζ, ξ, ηrζ)1IA(ξ(ηrζ)) d(n)ξ η(n)(dζ)µ(dη)

=
∫
A

∫
A∩(Rd)n

∫
M∩(Rd)n

e−E(ξ|ηrζ)+E(ζ|ηrζ) G(ξ, ζ, ηrζ) d(n)ξ η(n)(dζ)µ(dη), (21)
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where the measure η(n) defined on A ∩ (Rd)n by η(n) =
∑

ζ⊂η:Cardζ=n δζ is the sum of all point
measures concentrated on the subsets of η with cardinality n, the measure d(n)ξ is defined on
M∩(Rd)n by

∫
G(ξ)d(n)ξ = 1

n!

∫
G(δx1 +· · ·+δxn) dx1 · · · dxn and E(ξ|η) := ERd(ξ|η) is the energy

of the n points configuration ξ with respect to the full configuration η as external configuration
(which is finite if ξη ∈ A). It is important to remark that the induction works because

1IA(y(ηrx))1IA(ξ(yηrxζ)) = 1IA(y(ηrx))1IA(yξ(ηrxζ)).

Therefore, since the symmetry equation (21) is satisfied under µ, using the proof (b) ⇒ (a) from
Proposition 2.29 [10], we conclude that µ is a canonical Gibbs measure associated to the smooth
potential ϕ on the set of allowed configuration A, that is µ ∈ CG. �
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