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1 Introduction

Let I be a finite index set (for example a finite subset of some lattice) and X = (Xi(t), i ∈
I, t ∈ [0, T ]) be an RI -valued diffusion which is the solution of the following finite-
dimensional stochastic differential equation (s.d.e.)

dXi(t) = dBi(t)−
1
2
∇ih(X(t)) dt , i ∈ I, t ∈ [0, T ] (1)

where h is a smooth function from RI into R and (Bi)i∈I is a sequence of independent,
real-valued Brownian motions. This stochastic dynamics corresponds to a perturbation by
gradient interactions in the form of drift terms of a sequence of finitely many Brownian free
dynamics at each lattice site. Moreover, the stationary measures for (??) are proportional
to the measure

µ(dx) = exp(−h(x))⊗i∈I dxi.

When I is replaced by Zd and the dynamics (??) is generalised in a natural way (see (??)),
a relevant question is the following : if the initial law is Gibbsian, is the law of the process
X(t) also Gibbsian at any time t > 0, in other words

does the Gibbsianness property propagate?

In fact, even if the initial distribution is locally absolutely continuous, the law of X(t)
for a time t > 0 can be much less regular in the sense that the sum of the interactions
between the (infinitely many) components can explode. So, to obtain a positive answer to
the above question, we restrict our study to two particular regimes which can be better
controlled. In Section 3, we present the propagation of Gibbsianness if the time t is short
enough, and in Section 4, we analyse for arbitrary times the case of small interactions
between the coordinates for a strongly unique initial Gibbsian condition, in other words
high-temperature evolution and high-temperature initial Gibbs measure.

These results were announced in [?]. We were inspired by the nice work of van Enter,
Fernandez, den Hollander and Redig, who consider in [?] the question of possible loss
and recovery of Gibbsianness in the context of Interacting Particle Systems with values
in {−1,+1}Zd

which follow a high-temperature Glauber dynamics. They treat several
cases and can exhibit situations where the process at time t is strong Gibbsian (in a
sense to be defined below), and other situations where it is not. See also [?] for related
results for Kawasaki dynamics. Unfortunately, since our state space RZd

is unbounded,
we cannot use all the criteria they have at their disposition (in particular, the criterion of
non-Gibbsianness contained in [?]) to test the Gibbsianness/non-Gibbsianness of νt. So
our present results only concern situations for which the Gibbsianness is conserved. We
hope to extend them soon to some non-Gibbsian example.
To our knowledge our paper and the recent results presented in [?] are the only ones
related to the propagation of Gibbsianness under a stochastic evolution like a diffusion
with values in a continuous space (the state space is the infinite-dimensional vector space
RZd

). In [?] the authors allow unbounded interactions but are then obliged to introduce
a somewhat weaker notion of Gibbsianness.

2



2 Gibbs measures and infinite-dimensional gradient diffu-
sions : the framework of our study

Let us first introduce some definitions and notations.
An interaction potential - or interaction - φ on RZd

is a collection of functions φΛ

from RZd
into R ∪ {+∞} where Λ varies in the set of finite subsets of Zd. Each φΛ is

supposed to be measurable with respect to FΛ, the σ-algebra generated by the canonical
projection on RΛ; that is for any x ∈ RZd

,

φΛ(x) = φΛ(xΛ)

where xΛ is the projection on RΛ of x.

The interaction φ is said to be of finite range if it satisfies :
(FR) ∃r > 0, diameter Λ > r =⇒ φΛ ≡ 0

The interaction φ is said to be regular bounded if it satisfies :
(RB) ∀Λ, φΛ is C3, bounded with bounded derivatives.

The interaction φ is said to be absolutely summable if it satisfies :
(AS) ∀i ∈ Zd,

∑
Λ3i ‖φΛ‖∞ =

∑
Λ3i sup

x∈RZd |φΛ(x)| < +∞
Remark that absolute summability for unbounded spins is a rather strong condition, which
is chosen here for technical convenience.
When an interaction φ is (AS) one can define the collection hφ = (hφ

Λ)Λ⊂Zd of associated
Hamiltonian functions on RZd

by

hφ
Λ =

∑
Λ′:Λ′∩Λ6=∅

φΛ′ . (2)

More generally, we note for x, y ∈ RZd
and Λ,∆ ⊂ Zd

hφ
Λ,∆(x, y) =

∑
Λ′:Λ′∩Λ6=∅
Λ′⊂Λ∪∆

φΛ′(xΛy∆\Λ),

where xΛy∆\Λ is the element in RZd
equal to x on Λ, y on ∆\Λ and 0 outside of Λ ∪∆.

For example, hφ
Λ,Zd(x, x) coincides with hφ

Λ(x). Furthermore, hφ
Λ,∅(x) =

∑
Λ′⊂Λ φΛ′(xΛ′) is

a function of xΛ. To recall this property, we will sometimes denote it by hφ
Λ,∅(xΛ).

In fact, as soon as the series on the right-hand side of (??) converges pointwise, one
can define a Hamiltonian function associated to a (possibly non absolutely) summable
interaction. To simplify we will always denote by hφ

i the function hφ
{i} (i ∈ Zd), by

hφ
Λ,∆(x) the function hφ

Λ,∆(x, x) (Λ,∆ ∈ Zd, x ∈ RZd
).

We call ρ a Gibbsian measure on RZd
associated to the reference measure m and to an

interaction φ for which the series (??) converges if it satisfies the system of Dobrushin-
Lanford-Ruelle (DLR) equations :

ρ(dxi/xj , j 6= i) =
1
zi

exp−
(
hφ

i (x)
)
m(dxi), i ∈ Zd.
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The set of such measures will be denoted by G(φ,m). (For general references on Gibbs
measures, see [?] and [?].)
The measure ρ will be called strong Gibbsian if the associated interaction is absolutely
summable, i.e. satisfies (AS).

Let ϕ be a so-called dynamical interaction on RZd
, having a C2-regularity and

satisfying (FR). The associated hamilton function hϕ
i , denoted by hi to simplify, is also

C2. We can now consider the following infinite-dimensional system given by :{
dXi(t) = dBi(t)− 1

2∇ihi(X(t)) dt , i ∈ Zd, t ∈ [0, T ],
X(0) ' ν

(3)

where ν is a probability measure on RZd
. We will become more precise in Section 3 (resp.

Section 4 ) about the exact assumptions on h and ν we take to assure that the infinite-
dimensional stochastic system (??) has a unique strong Markovian solution X with values
in the infinite product of continuous trajectories ΩT = C([0, T ], R)Zd

. Deuschel described
in ([?],[?]) the Gibbsian structure on the path space ΩT of the law Qν , when the initial
distribution ν itself is Gibbsian (associated to an initial interaction ϕ̃). Later, this
result was completed and generalised in [?], by showing a bijection between the set of
Gibbs measures associated to the initial interaction ϕ̃ on RZd

and a set of Gibbs measures
on the path space ΩT describing the full dynamics. Having a Gibbs representation of Qν

on the path level (even a strong Gibbsian one, see [?] Corollary 2) , we would like to
know if at each time t, the law νt of X(t), a probability measure on RZd

, remains strong
Gibbsian. Clearly, νt is the projection at time t of Qν , but projections are maps which
do not conserve a priori the Gibbsianness (see the famous examples of [?], and also [?],
[?] among others). In [?] it was remarked that, projecting at time 0 a general strong
Gibbs measure on the path space, the image measure which is obtained on the state space
preserves a Gibbsian form in the following weak sense : it is associated to a modification
(cf. [?] Section 1.3, for the exact definition), roughly speaking to a family of compatible
local densities with respect to a reference measure. But the regularity of the density and
the existence of an underlying nice interaction potential is completely unclear. In the
Remarks after Proposition 2.5 in [?], a reference to the work of Kozlov was given to clarify
this question. The object of this paper is to present a positive answer for the projection
at time t > 0.

The challenge is to control the evolution of an initial absolutely summable interaction
ϕ̃ under the dynamics (??). It is clear that, even if ϕ̃ is of finite range this property
immediately disappears for any time t > 0 since the interacting diffusion carries instan-
taneously information between all the coordinates. Moreover, to assure that at time t,
the process is still Gibbsian and associated to a ”good” interaction, i.e. an absolutely
summable one, we are obliged to restrict our study to two cases; first for small times t,
which implies that the process stays close to the initial Gibbsian condition. Secondly, for
small dynamical interaction ϕ between the coordinates, which assures that the sum of the
initial interaction and the interaction induced by the dynamics does not explode.
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3 Propagation of Gibbsianness during a short stochastic
diffusive evolution

Let us consider the infinite-dimensional gradient system (??) introduced in Section 2 where
the initial distribution is Gibbsian. We have the following result.

Theorem 1 Let Qν be the law on Ω = C(R+, R)Zd
of the infinite-dimensional diffusion

solution of {
dXi(t) = dBi(t)− 1

2∇ihi(X(t)) dt , i ∈ Zd, t > 0,
X(0) ' ν

(4)

where ν ∈ G(ϕ̃, dx) with support included in l1(γ), with γ = (e−α|i|)i∈Zd, α > 0. Let us
moreover suppose that

• the initial interaction ϕ̃ is of finite range (FR) and each ϕ̃Λ is Lipschitz continuous
(uniformly in Λ)

• the dynamical interaction ϕ is of finite range (FR), and each ϕΛ is C2 with bounded
derivatives of order 1 and 2 (uniformly in Λ).

Then, there exists a time t0 > 0 depending only on ϕ̃ and ϕ such that, for any t ≤ t0,

{νt = Qν ◦X(t)−1 : ν ∈ G(ϕ̃, dx)} ⊂ G(ϕt, dx)

where ϕt is an absolutely summable (AS) interaction depending only on the initial and
dynamical interactions ϕ̃ and ϕ.

Remark 1 One can make explicit some additional assumptions on ϕ̃ in order to assure
that G(ϕ̃, dx) contains at least one measure with support included in l1(γ). For example
suppose there exists a > 0, b ≥ 0 such that for each i ∈ Zd

(i) ∀x ∈ R, x∇iϕ̃i(x) ≥ a|x| − b

(ii) a >
∑
Λ3i

#Λ>1

‖∇iϕ̃Λ‖∞.

Then there exists ν ∈ G(ϕ̃, dx) satisfying
∫
‖x‖γν(dx) < +∞ where ‖x‖γ =:

∑
i∈Zd |xi|e−α|i|.

This obviously implies that ν{x : ‖x‖γ < +∞} = 1.

As example, the following concrete pair interaction ϕ̃ satisfies conditions (i) and (ii) : take
as self-interaction ϕ̃i for each site i the same C1-regularization around 0 of the function
x 7→ a|x|, and as finite range pair interaction ϕ̃{i,j} any C1 function on R2 with small
enough bounded derivatives.
The proof of Remark ?? is postponed to the end of the section.

Proof of Theorem ?? :
The proof is based on an approximation of νt by a sequence of probability measures νt

Λ,
which are the laws at time t of finite-dimensional systems. It will be relatively easy to
obtain a Gibbs representation for each νt

Λ. But the delicate point will be the convergence
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of their associated Hamiltonian functions towards a limiting function, which will be a good
candidate as Hamiltonian function associated to νt.

Let us first recall a representation theorem, which we will use for the initial Gibbs
measure ν (Theorems 7.12 and 7.26 in [?]).

Lemma 1 The probability measure ν, like every element of G(ϕ̃, dx), is a mixture of
elements of ex G(ϕ̃, dx), where ex G(ϕ̃, dx) is the set of extremal Gibbs measures µ which
are characterized by the following property : there exists y ∈ RZd

such that

µ = lim
Λ↗Zd

µΛ,y ⊗ δyΛc where µΛ,y(dxΛ) =
1

Z̃Λ,y

e−h̃Λ,Λc (x,y)dxΛ. (5)

The family of µΛ,y is in fact the family of finite-volume specifications with fixed boundary
condition y.
The limit in the above Lemma is taken in the following sense: for any increasing sequence
Λn of finite subsets in Zd converging to Zd when n goes to infinity, µΛn,y ⊗ δyΛc

n
converges

in the local convergence topology towards µ.
We first prove the theorem in the case where ν ∈ exG(ϕ̃, dx).

Let (νΛ,y)Λ⊂Zd be the approximating sequence of ν defined by (??). For Λ ⊂ Zd fixed and
any i ∈ Λ, we introduce the i-decoupled infinite measure νi

Λ,y as follows :

νi
Λ,y(dxΛ) =

1
Z̃Λ,y

e−h̃Λ\i,Λc (x,y)dxΛ\idxi.

Since h̃Λ,Λc(x, y) = h̃Λ\i,Λc(x, y) + h̃i(xΛyΛc), we obtain

νi
Λ,y(dxΛ) = eh̃i(xΛyΛc ) νΛ,y(dxΛ). (6)

Let us remark that νi
Λ,y ⊗ δyΛc converges in Λ towards a measure νi on RZd

which is
absolutely continuous with respect to ν and satisfies :

νi(dx) = eh̃i(x) ν(dx).

In the same way, we denote by µΛ and µi
Λ the following measures (not necessary finite) :

µΛ(dxΛ) = e−hΛ,∅(xΛ) dxΛ, µi
Λ(dxΛ) = e−hΛ\i,∅(xΛ\i) dxΛ\idxi. (7)

Then
µi

Λ(dxΛ) = ehi,Λ(xΛ) µΛ(dxΛ). (8)

Let us now introduce the following finite-dimensional approximation of the dynamics (??) :

dXi(t) = dBi(t)−
1
2
∇ihi,Λ(XΛ(t))dt, ∀i ∈ Λ, t > 0. (9)

Remark that we also could write the drift as −1
2∇ihΛ,∅(XΛ(t)). Under this form, µΛ is

clearly a reversible measure associated to this dynamics.
We denote by QxΛ

Λ the law on C(R+, R)Λ of the solution of (??) when the initial condition
is xΛ ∈ RΛ.
We now introduce, in the same way as above, some decoupled (infinite- and finite-dimensional)
dynamics at the site i :

6



{
dXj(t) = dBj(t)− 1

2∇jhj,Zd\i(X(t))dt, ∀j ∈ Zd\{i}, t > 0
dXi(t) = dBi(t), t > 0.

(10)

Qx,i denotes the law of the solution of (??) with deterministic initial condition x ∈ RZd
.

These dynamics are useful since they are simpler than the undecoupled ones, and we will
prove that the law νt of the gradient system at time t is absolutely continuous with respect
to the law at time t of the above decoupled system.
We also consider the finite-dimensional approximation of (??) :

{
dXj(t) = dBj(t)− 1

2∇jhj,Λ\i(XΛ\i(t))dt, ∀j ∈ Λ\i, t > 0
dXi(t) = dBi(t).

(11)

We denote by QxΛ,i
Λ the law on C(R+, R)Λ of the solution of (??) when the initial condition

is xΛ ∈ RΛ. µi
Λ is a reversible measure associated to this dynamics.

Since the solution of (??) (when it exists) is Markovian, one has : Qν =
∫

Qx ν(dx).
More generally, for any measure µ, we denote by Qµ (resp. Qµ,i, Qµ

Λ or Qµ,i
Λ ) the mixture

of Qx under µ : Qµ =
∫

Qx µ(dx) (resp.
∫

Qx,i µ(dx),
∫

Qx
Λ µ(dx) or

∫
Qx,i

Λ µ(dx)) .
We also define the projections at time t of these measures :

νt = Qν ◦X(t)−1, νt,i = Qνi,i ◦X(t)−1, νt
Λ,y = Q

νΛ,y

Λ ◦X(t)−1, νt,i
Λ,y = Q

νi
Λ,y ,i

Λ ◦X(t)−1.

Lemma 2 For each t > 0 and i ∈ Zd, the following weak convergences hold :

lim
Λ↗Zd

νt
Λ,y = νt and lim

Λ↗Zd
νt,i
Λ,y = νt,i.

Proof :
We only prove the first convergence. The proof of the second one is analogous.
Under the assumptions satisfied by ϕ in Theorem ??, it is simple to verify that for any
initial deterministic condition x ∈ l1(γ) = {y = (yi)i∈Zd ∈ RZd

: ‖y‖γ < +∞}, a strong
solution of (??) exists in C(R+, l1(γ)). It is obtained as limit of finite-dimensional diffusions
solution of (??). More precisely, let Λn be an increasing sequence of finite subsets in Zd

converging to Zd when n goes to infinity. To clarify the notations, instead of using the
canonical processes, for x ∈ RZd

we denote by Xx the solution of (??) with ν = δx and by
X(n),x the (infinite-dimensional) process with initial condition x whose restriction on Λn

solves (??) with Λ = Λn and whose coordinates outside Λn are frozen in xΛc
n
. So the law

of Xx is equal to Qx and the law of X(n),x is equal to Q
xΛn
Λn

⊗ δxΛc
n
. Following analogous

techniques as the one used in [?] Theorem 4.1 (or [?], [?] if the interaction is reduced to
a pair interaction), we now prove that, for any T > 0, X(n),x is a Cauchy sequence in
L1(C([0, T ], l1(γ))).
Let r the range of ϕ and K > 0 the supremum of a Lipschitz constant for ∇jhj (uniform
in j) and a bound for supx |∇jhj(x)|. Let m < n and let Λ◦m denote the r-interior of Λm

defined by Λ◦m = {j ∈ Λm : ∀k with |k − j| ≤ r, k ∈ Λm} . So Λ◦m ⊂ Λm ⊂ Λn.
For i ∈ Λ◦m,

|X(n),x
i (t)−X

(m),x
i (t)| =

1
2
|
∫ t

0
∇ihi,Λn(X(n),x(s))−∇ihi,Λm(X(m),x(s)) ds|

≤ K

2

∑
{j:|j−i|≤r}

∫ t

0
|X(n),x

j (s)−X
(m),x
j (s)| ds
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Thus,

E(sup
s≤t

|X(n),x
i (s)−X

(m),x
i (s)|) ≤ K

2

∑
{j:|j−i|≤r}

∫ t

0
E(sup

u≤s
|X(n),x

j (u)−X
(m),x
j (u)|) ds.

For i ∈ Λm \ Λ◦m,

|X(n),x
i (t)−X

(m),x
i (t)|

=
1
2
|
∫ t

0
∇ihi,Λn(X(n),x(s))−∇ihi,Λm(X(m),x(s)) ds|

≤ K

2

∑
{j:|j−i|≤r}∩Λm

∫ t

0
|X(n),x

j (s)−X
(m),x
j (s)| ds +

1
2
|
∫ t

0

∑
Λ′:Λ′ 6⊂Λm

Λ′⊂Λn

∇iϕΛ′(X(m),x(s))ds|

Thus,

E(sup
s≤t

|X(n),x
i (s)−X

(m),x
i (s)|) ≤ K

2

∑
{j:|j−i|≤r}

∫ t

0
E(sup

r≤s
|X(n),x

j (r)−X
(m),x
j (r)|) ds +

K

2
t.

For i ∈ Λn \ Λm, we have

|X(n),x
i (t)−X

(m),x
i (t)| = |Bi(t)−

1
2

∫ t

0
∇ihi,Λn(X(n),x(s)) ds|;

thus, using Doob inequality for Bi,

E(sup
s≤t

|X(n),x
i (s)−X

(m),x
i (s)|) ≤ 2

√
t +

K

2
t.

For i ∈ Λc
n, |X(n),x

i (t)−X
(m),x
i (t)| ≡ 0.

To obtain the desired Cauchy property, we apply the following infinite-dimensional version
of Gronwall’s Lemma (see for example [?] Lemme 1, page 197). If for each i ∈ Zd, fi(t)
satisfies

fi(t) ≤ q′i +
∑
j∈Zd

qi,j

∫ t

0
fj(s)ds

with
∑

i∈Zd qi,jγi ≤ Cγj for some constant C > 0 and any j ∈ Zd, then the following
inequality holds in l1(γ): ‖ f(t) ‖γ≤‖ q′ ‖γ eCt. Taking here fi(t) = E(sups≤t |X

(n),x
i (s)−

X
(m),x
i (s)|), qi,j = K

2 1I|j−i|≤r1IΛm(i) , q′i = (2
√

t + k
2 t)1IΛn\Λ◦m(i) and C = K

2 eαr#{k ∈
Zd, |k| ≤ r} one obtains

E(sup
s≤t

‖ X(n),x(s)−X(m),x(s) ‖γ) ≤ (2
√

t +
k

2
t)(

∑
i∈Λn\Λ◦m

γi) exp Ct. (12)

Since γ ∈ l1(Zd) the right hand side of this inequality goes to 0 when n and m are large
enough - uniformly in x - we conclude that X(n),x converges in L1(C([0, T ], l1(γ))) uni-
formly in x towards Xx.
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Moreover, with similar computations as above, one obtains the following Lipschitz regu-
larity of Xx as a function of x :

∃C ′ > 0, E(sup
s≤t

‖ Xx(s)−Xy(s) ‖γ) ≤‖ x− y ‖γ eC′t.

Now, the law of the solution of (??) is just a mixture under ν of the laws Qx. We may
claim this since the support of ν is included in l1(γ).

Let us now prove the local convergence of νt
Λn,y towards νt. Let g be a ∆-local Lipschitz

function on RZd
with Lipschitz constant Kg and fix m < n large enough to have ∆ ⊂ Λm(⊂

Λn). We have

|
∫

g(x∆)νt(dx)−
∫

g(x∆)νt
Λn,y(dxΛn)|

= |
∫

g(X∆(t))Qν(dX)−
∫

g(X∆(t))QνΛn,y

Λn
(dXΛn)|

= |
∫

RZd

∫
g(X∆(t))Qx(dX)ν(dx)−

∫
RΛn

g(X∆(t))QxΛn
Λn

(dXΛn)νΛn,y(dxΛn)|

≤ C1 + C2 + C3

where

C1 =
∫

RZd
|
∫

g(X∆(t))Qx(dX)−
∫

g(X∆(t))QxΛm
Λm

(dX)| ν(dx)

C2 = |
∫ ∫

g(X∆(t))QxΛm
Λm

(dX)ν(dx)−
∫ ∫

g(X∆(t))QxΛm
Λm

(dX)νΛn,y(dxΛn)|

C3 =
∫

RΛn

|
∫

g(X∆(t))QxΛm
Λm

(dX)−
∫

g(X∆(t))QxΛn
Λn

(dX)| νΛn,y(dxΛn).

With the above notations,

C1 =
∫

RZd
E|g(Xx

∆(t))− g(X(m),x
∆ (t))| ν(dx)

≤ Kg

∫
RZd

E|Xx
∆(t)−X

(m),x
∆ (t)| ν(dx)

≤ Kg

∫
RZd

E
∑
i∈∆

|Xx
i (t)−X

(m),x
i (t)| ν(dx)

≤ Kg( inf
i∈∆

γi)−1

∫
RZd

E
∑
i∈∆

γi|Xx
i (t)−X

(m),x
i (t)| ν(dx)

≤ Kg( inf
i∈∆

γi)−1

∫
RZd

E(‖ Xx(t)−X(m),x(t) ‖γ) ν(dx)

≤ c1(
∑

i∈(Λ◦m)c

γi),
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using (??) for the last inequality, where c1 > 0 is a constant depending only on t, ϕ, g, r,∆, γ.
In the same way, one has

C3 =
∫

RΛn

E|g(X(m),x
∆ (t))− g(X(n),x

∆ (t))| νΛn,y(dxΛn)

≤ Kg

∫
RΛn

E|X(m),x
∆ (t)−X

(n),x
∆ (t)| νΛn,y(dxΛn)

≤ Kg( inf
i∈∆

γi)−1

∫
E(‖ X(m),x(t)−X(n),x(t) ‖γ) νΛn,y(dxΛn)

≤ c1(
∑

i∈(Λ◦m)c

γi).

The second term is controlled in the following way :

C2 = |
∫

E(g(X(m),x
∆ (t)))ν(dx)−

∫
E(g(X(m),x

∆ (t)))νΛn,y(dxΛn)|.

But, for m fixed, X
(m),x
∆ (t) and then E(g(X(m),x

∆ (t)) are Λm-local functions in x depending
continuously on xΛm . So, thanks the local convergence of the finite-volume specifications
νΛn,y towards ν when n goes to infinity, this term vanishes for m fixed and n going to
infinity.
To complete the proof of the convergence of νt

Λn,y towards νt it remains now to take m
large enough in such a way that (

∑
i∈(Λ◦m)c γi) (and thus C1 + C3) stays as small as nec-

essary. �

To prove that νt is Gibbsian, we will use the fact that νt is absolutely continuous with
respect to νt,i, which itself is a consequence of the absolute continuity of νt

Λ,y with respect

to νt,i
Λ,y. Let us start with a nice representation of this density

dνt
Λ,y

dνt,i
Λ,y

.

Lemma 3 For each t > 0, Λ ⊂ Zd and any i ∈ Λ,

dνt
Λ,y

dνt,i
Λ,y

(xΛ) = e−h̃i(xΛyΛc )
EQ

xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
EQ

xΛ
Λ,i

(
efΛ\i,y(XΛ(t))−fΛ\i,y(xΛ)

) , (13)

where
fΛ,y(x) = hΛ,∅(xΛ)− h̃Λ,Λc(x, y).

Proof :
We have :

dνt
Λ,y

dνt,i
Λ,y

(xΛ) =
dνt

Λ,y

dµΛ
(xΛ)

dµΛ

dµi
Λ

(xΛ)
dµi

Λ

dνt,i
Λ,y

(xΛ).

10



Using the reversibility of QµΛ
Λ (resp. Q

µi
Λ,i

Λ ) the first term of the right hand side is obtained
as follows : for any regular bounded local function g,∫

g(xΛ)νt
Λ,y(dxΛ) =

∫
g((XΛ(t))QνΛ,y

Λ (dX)

=
∫ ∫

g((XΛ(t))
dνΛ,y

dµΛ
(XΛ(0))QµΛ

Λ (dX)

=
∫ ∫

g((XΛ(0))
dνΛ,y

dµΛ
(XΛ(t))QµΛ

Λ (dX)

=
∫

g(xΛ)
∫

dνΛ,y

dµΛ
(XΛ(t))QxΛ

Λ (dX)µΛ(dxΛ).

Then
dνt

Λ,y

dµΛ
(xΛ) = EQ

xΛ
Λ

(dνΛ,y

dµΛ
(XΛ(t))

)
.

Doing a similar computation for the decoupled dynamics one obtains

dνt
Λ,y

dνt,i
Λ,y

(xΛ) = EQ
xΛ
Λ

(
efΛ,y(XΛ(t))

)
e−hi,Λ(xΛ)EQ

xΛ
Λ,i

(
efΛ\i,y(XΛ(t))

)−1

= e−hi,Λ(xΛ)+ϕi(xi)
efy

Λ(xΛ)

efΛ\i,y(xΛ)

EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
EQ

xΛ
Λ,i

(
efΛ\i,y(XΛ(t))−fΛ\i,y(xΛ)

) ,

which is the same as the expression (??). �

Let us first remark that, since ϕ̃ is of finite range, the expression e−h̃i(xΛyΛ
Λc ) does not

depend on y and on Λ for Λ large enough. We will now prove, using cluster expansions,
that the last ratio in (??) is a function of x indexed by Λ which converges uniformly in y
when Λ tends to Zd.

Thanks to Girsanov theorem, the probability measures QxΛ
Λ and QxΛ

Λ,i have a Gibbs
representation on the path space C(R+, R)Λ, that is, if one restricts them to the the
canonical filtration at any time t they have both an explicit density with respect to the
Wiener measure with deterministic initial condition xΛ, denoted by ⊗i∈Λρxi . The density
of QxΛ

Λ is the following :

FΛ(XΛ) = exp
∑
i∈Λ

(∫ t

0
−1

2
∇ihi,Λ(XΛ(s)) dXi(s)−

1
2

∫ t

0

1
4
(∇ihi,Λ)2(XΛ(s))ds

)
,

which becomes, using Ito formula,

FΛ(XΛ)

= exp
(
− 1

2
hΛ,∅(XΛ(t)) +

1
2
hΛ,∅(XΛ(0)) +

∑
i∈Λ

∫ t

0

(1
4
∆ihΛ,∅ −

1
8
(∇ihΛ,∅)

2
)
(XΛ(s))ds

)
= exp

(
−
∑
A⊂Λ

ΦA(XΛ)
)
, (14)
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with

ΦA(XΛ) =
1
2
ϕA(XΛ(t))− 1

2
ϕA(XΛ(0)) (15)

−
∫ t

0

(1
4

∑
j∈A

∆jϕA(XΛ(s))− 1
8

∑
B,C⊂A
B∪C=A
B∩C 6=∅

∑
j∈B∩C

∇jϕB(XΛ(s))∇jϕC(XΛ(s))
)
ds.

The family Φ = (ΦA)A⊂Zd is an interaction potential on Ω; since ϕ is of finite range (FR),
Φ is of finite range too. Denoting by H the hamiltonian function associated to Φ, we then
obtained that, for any Λ ⊂ Zd and i ∈ Λ, on the events depending only on times between
0 and t,

QxΛ
Λ (dXΛ) = e−HΛ,∅(XΛ) ⊗j∈Λ ρxj (dXj). (16)

In the same way, one proves that

QxΛ
Λ,i(dXΛ) = e−HΛ\i,∅(XΛ\i) ⊗j∈Λ\i ρxj (dXj) ⊗ ρxi(dXi). (17)

Let us describe some properties of the interaction potential Φ.

Lemma 4 There exists a constant C > 0 independent of the time t such that for any
X ∈ Ω and any A ⊂ Zd

|ΦA(X)| ≤ C
(
t + sup

j∈A
|Xj(t)−Xj(0)|

)
.

Proof :
It is clear, due to the equality (??) and the assumptions given on ϕ. �

We can now expand the terms EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
and EQ

xΛ
Λ,i

(
efΛ\i,y(XΛ(t))−fΛ\i,y(xΛ)

)
.

We give the detailed computations only for the first expansion, since the second one is
obtained in a similar way.

EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
= E⊗j∈Λ ρxj

(
exp

(
−
∑
A⊂Λ

Ψy,Λ
A (XΛ)

))
(18)

where Ψy,Λ is the following interaction potential on C([0, T ], R)Λ :

Ψy,Λ
A (X) = ΦA(X)− ϕA(X(t)) + ϕA(X(0)) +

∑
B⊂Zd

B∩Λ=A

(
ϕ̃B(XΛ(t)yΛc)− ϕ̃B(XΛ(0)yΛc)

)
.(19)

We also denote by Ψ the interaction potential on C([0, T ], R)Zd
:

ΨA(X) = ΦA(X)− ϕA(X(t)) + ϕA(X(0)) +
(
ϕ̃A(X(t))− ϕ̃A(X(0))

)
(20)

and immediately remark that, as soon as Λ is large enough with respect to the index set
A, Ψy,Λ

A ≡ ΨA.
As in the Lemma ??, we obtain the following estimates for the interactions Ψy,Λ and Ψ.

12



Lemma 5 There exists a constant C > 0 independent of the time t such that for any
y ∈ RZd

,Λ ⊂ Zd, X ∈ Ω and any A ⊂ Λ,

|Ψy,Λ
A (X)| ≤ C

(
t + sup

j∈A
|Xj(t)−Xj(0)|

)
and

|ΨA(X)| ≤ C
(
t + sup

j∈A
|Xj(t)−Xj(0)|

)
.

Proof :
It is a direct consequence of Lemma ?? and the assumptions given on ϕ and ϕ̃. The
uniformity of the first upperbound with respect to y and Λ is then clear. �

Let us now introduce the main notations and tools we need for the cluster representa-
tion. Let N ∈ N large enough is such a way that for #A > N, Ψy,Λ

A ≡ 0. Such a number N

exists since Ψy,Λ
A is of finite range uniformly in y and Λ. Let V be a finite subset of Zd such

that for any A ⊂ Zd with Ψy,Λ
A 6= 0 then A ⊂ ∩j∈A(V+ j). (Such a set exists. For example

if ϕ and ϕ̃ are nearest neighbor pair potential interactions, then for #A > 3,Ψy,Λ
A ≡ 0 and

one can take V = {i ∈ Zd : |i| = 1 or i = 2j, |j| = 1 or i = j + k, |j| = 1, |k| = 1}.)
Let us define a subclass of finite volumes in Zd :

D =
{

A ⊂ Zd : 1 ≤ #A ≤ N and A ⊂ ∩j∈A(V + j)
}

.

A finite set γ = {A1, A2, . . . , An}, n ≥ 1, of elements of D is a cluster. It is called connected
if for any Ai, Aj ∈ γ, there exists a sequence i = i1, i2, . . . , im = j such that Ai1 ∩Ai2 6= ∅,
Ai2 ∩ Ai3 6= ∅, . . ., Aim−1 ∩ Aim 6= ∅. We call support of the cluster γ the subset of Zd

equal to
⋃n

l=1 Al and denote it by supp(γ). The integer number |γ| is the cardinality of
the support of γ.
We denote by A the set of connected clusters and AΛ the subset of A which contains
the clusters whose supports are included in Λ. A collection of clusters γ1, γ2, . . . , γn is
called compatible if their associated supports are disjoint. We denote by LΛ the set of all
compatible collections of non-empty clusters belonging to AΛ.
We can now start the expansion of the expression (??).

EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
= E⊗j∈Λρxj

( ∏
A⊂Λ

(
e−Ψy,Λ

A (XΛ) − 1 + 1
))

= E⊗j∈Λρxj

(
1 +

∞∑
n=1

∑
{γ1,...γn}∈LΛ

Ky,Λ(γ1)(X)Ky,Λ(γ2)(X) . . .Ky,Λ(γn)(X)

)
,

where

Ky,Λ(γ)(X) =
∏
A∈γ

(
e−Ψy,Λ

A (XΛ) − 1
)

13



We then obtain the below cluster decomposition :

EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

)
= 1 +

∞∑
n=1

∑
{γ1,...γn}∈LΛ

Ky,Λ
x (γ1)Ky,Λ

x (γ2) . . .Ky,Λ
x (γn) (21)

where

Ky,Λ
x (γ) = E⊗

j∈Zdρxj

(
Ky,Λ(γ)(X)

)
.

In a similar way, we obtain for any i ∈ Λ :

EQ
xΛ
Λ,i

(
efΛ\i,y(XΛ(t))−fΛ\i,y(xΛ)

)
= 1 +

∞∑
n=1

∑
{γ1,...γn}∈LΛ\i

Ky,Λ
x (γ1)Ky,Λ

x (γ2) . . .Ky,Λ
x (γn).

Let also define the coefficients related to the interaction Ψ (instead of Ψy,Λ) by :

K(γ)(X) =
∏
A∈γ

(
e−ΨA(X) − 1

)
, Kx(γ) = E⊗

j∈Zdρxj

(
K(γ)

)
. (22)

In the next lemma, we provide estimates for the weight of the clusters (uniformly in x, y
and Λ).

Lemma 6 There exists some strictly positive constant λ(t) which tends to 0 as t goes to
0 such that, for any x ∈ RZd

, any y ∈ RZd
, Λ ⊂ Zd and any γ ∈ A

|Ky,Λ
x (γ)| ≤ λ(t)|γ| and |Kx(γ)| ≤ λ(t)|γ|.

Proof :
We need to commute several times integration and products. To this aim, the following
abstract integration lemma, which generalizes Hölder inequalities, is very useful. It is
proved in [?] Lemma 5.2 :

Lemma 7 Let (µx)x∈X be a family of probability measures, each one defined on a space
Ex, where the elements x belong to some finite set X . Let us also define a finite family
(gk)k of functions on EX = ×x∈XEx such that each gk is Xk-local for a certain Xk ⊂ X ,
in the sense that

gk(e) = gk(eXk
), for e = (ex)x∈X ∈ EX .

Let pk > 1 be numbers satisfying the following conditions :

∀x ∈ X ,
∑
Xk3x

1
pk
≤ 1. (23)

Then ∣∣∣∣∫
EX

∏
k

gk ⊗x∈X dµx

∣∣∣∣ ≤∏
k

(∫
EXk

|gk|pk ⊗x∈Xk
dµx

)1/pk

. (24)
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Let γ = {A1, A2, . . . , An} ∈ A; we apply Lemma ?? with X =supp(γ), Xk = Ak, gk =

e
−Ψy,Λ

Ak − 1 and pk = p for all k, with p an even integer number greater than N . Since∑
Ak3j

1
pk
≤ N

p ≤ 1, we get

|Ky,Λ
x (γ)| ≤

n∏
k=1

E⊗j∈Ak
ρxj

(
|e−Ψy,Λ

Ak − 1|p
)1/p

.

Using the bound of Lemma ??, we obtain

|Ky,Λ
x (γ)| ≤

n∏
k=1

E⊗j∈Ak
ρxj

((
eC(t+supj∈Ak

|Xj(t)−xj |) − 1
)p)1/p

.

Now, due to the existence of any exponential moment for the N-dimensional Brownian
motion,

E⊗j∈Ak
ρxj

(
(eC(t+supj∈Ak

|Xj(t)−xj |) − 1)p
)1/p

≤ λ(t),

where the constant λ(t) tends to 0 as t goes to 0, uniformly in x and Ak ∈ D. One obtains
the first desired upperbound :

|Ky,Λ
x (γ)| ≤ λ(t)|γ|.

The second upperbound is then obvious. �
One can then deduce from Lemma ?? the following upper bound : for any cluster γ ∈ A
and for t small enough,

sup
x,y∈RZd

sup
Λ⊂Zd

∑
γ′∈A:

supp(γ)∩supp(γ′) 6=∅

|Ky,Λ
x (γ′)|e|γ′| ≤ |γ|. (25)

So, following Kotecký and Preiss (cf [?] page 492), we can expand for t small enough the
logarithm of both, denominator and numerator of the ratio in (??) :

ln
(

EQ
xΛ
Λ

(
efΛ,y(XΛ(t))−fΛ,y(xΛ)

))
= ln

(
1 +

∞∑
n=1

∑
{γ1,...γn}∈LΛ

Ky,Λ
x (γ1)Ky,Λ

x (γ2) . . .Ky,Λ
x (γn)

)

=
∞∑

n=1

∑
{γ1,...,γn}∈MΛ

a(γ1, . . . , γn)Ky,Λ
x (γ1) . . .Ky,Λ

x (γn), (26)

and

ln
(

EQ
xΛ
Λ,i

(
efΛ\i,y(XΛ(t))−fΛ\i,y(xΛ)

))
= ln

(
1 +

∞∑
n=1

∑
{γ1,...γn}∈LΛ\i

Ky,Λ
x (γ1)Ky,Λ

x (γ2) . . .Ky,Λ
x (γn)

)

=
∞∑

n=1

∑
{γ1,...,γn}∈MΛ\i

a(γ1, . . . , γn)Ky,Λ
x (γ1) . . .Ky,Λ

x (γn), (27)
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where MΛ is the set of collections of clusters γ1, . . . , γn ∈ AΛ such that their union is
also in AΛ, that is the union is connected too, and the real numbers a(γ1, . . . , γn) are
coefficients coming from the Taylor expansion of the logarithm function.
The logarithm of the ratio is equal to the difference of the logarithms (??) and (??). It
has then the following expansion for t small :

∞∑
n=1

∑
{γ1,...,γn}∈MΛ:

supp(∪jγj)3i

a(γ1, . . . , γn) Ky,Λ
x (γ1) . . .Ky,Λ

x (γn). (28)

Since the inequality (??) holds uniformly in x, y and Λ, following [?] (see also [?] or [?]),
we conclude that the series (??) converges uniformly in x, y and Λ. Moreover, for any
cluster γ, Ky,Λ

x (γ) tends to Kx(γ) as Λ goes to Zd; using Lebesgue dominated convergence

theorem, we conclude that
dνt

Λ,y

dνt,i
Λ,y

(xΛ) converges uniformly in x, y towards e−h̃i(x)eGi(x)

where

Gi(x) =
∞∑

n=1

∑
{γ1,...,γn}∈MZd :

supp(∪jγj)3i

a(γ1, . . . , γn) Kx(γ1) . . .Kx(γn). (29)

We are now able to complete the proof of Theorem ??.
From Lemma ??, for each regular local bounded function g from R∆ into R, we have∫

RZd
g(x∆) νt(dx) = lim

Λ→Zd

∫
RZd

g(x∆) νt
Λ,y(dxΛ)

= lim
Λ→Zd

∫
RZd

g(x∆)
dνt

Λ,y

dνt,i
Λ,y

(xΛ) νt,i
Λ,y(dxΛ)

=
∫

RZd
g(x∆)e−h̃i(x)+Gi(x)νt,i(dx).

Thus, on RZd
, the probability measures νt(dx) and e−h̃i(x)+Gi(x)νt,i(dx) coincide for each

i ∈ Zd. Furthermore, since each νt,i
Λ,y is the law at time t of a decoupled dynamics with

decoupled initial condition, it is a product measure on RΛ\i × R{i} whose projection on
the ith-coordinate is exactly the Lebesgue measure. It implies that their infinite-volume
limit νt,i is a product measure on RZd\i × R{i}, whose projection on the ith-coordinate is
the Lebesgue measure too. Then, νt is a Gibbs measure associated to Lebesgue measure
as reference measure and to the interaction ϕt given by :

ϕt
A(x) = ϕ̃A(x)−

∞∑
n=1

∑
{γ1,...,γn}∈MA

supp(∪jγj)=A

a(γ1, . . . , γn) Kx(γ1) . . .Kx(γn). (30)

This interaction potential is an explicit small perturbation of the initial interaction ϕ̃. The
proof of Theorem ?? is now completed in the case ν ∈ exG(ϕ̃, dx).

on the other hand, due to Lemma ??, ν can be represented as a mixture ν =
∫

νθ m(dθ),

where νθ are elements of exG(ϕ̃, dx). Therefore, νt = Q
∫

νθ m(dθ) ◦ X(t)−1 =
∫ (

Qνθ ◦

X(t)−1
)
m(dθ) =

∫
νt

θ m(dθ). Since we just proved that νt
θ ∈ G(ϕt, dx), this implies that
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νt ∈ G(ϕt, dx) too. �

Proof of Remark ?? :
It is done similarly as in [?] page 71. For any n ≥ 1 and y ∈ RZd

we first prove that∫
RΛn ‖x‖γνΛn,y(dx) is bounded uniformly in n and y. For i ∈ Λn, by integration by parts,

Z̃Λn,y =
∫

RΛn

exp(−h̃Λn,Zd(x, y))dxΛn =
∫

xi∇ih̃Λn,Zd(x, y) exp(−h̃Λn,Zd(x, y))dxΛn .

Thus
∫

xi∇ih̃Λn,Zd(x, y) νΛn,y(dxΛn) = 1. But

xi∇ih̃Λn,Zd(x, y) = xi∇iϕ̃i(xi) +
∑
Λ3i

#Λ>1

xi∇iϕ̃Λ(xΛnyΛc
n
)

≥ a|xi| − b−
∑
Λ3i

#Λ>1

|xi| ‖∇iϕ̃Λ‖∞

≥ (a−
∑
Λ3i

#Λ>1

‖∇iϕ̃Λ‖∞)|xi| − b.

Thus, for some a′ > 0,
∫

(a′|xi| − b) νΛn,y(dxΛn) ≤ 1 which implies that there exists a
constant c > 0 independent of n and y such that

∫
|xi| νΛn,y(dxΛn) ≤ c . This bound

remains valid for the integral under ν, and then∫
‖x‖γν(dx) =

∫ ∑
i

|xi|e−α|i|ν(dx) ≤ c
∑

i

e−α|i| < +∞. �
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4 Small dynamical interactions

Let us now consider infinite-dimensional gradient dynamics where the dynamical interac-
tion is small. Since the self-interaction does not need to be small (on the contrary) we
divide the dynamical interaction into two parts as follows U + βϕ where U is the self-
interaction and β > 0 is a small parameter. We then consider the following dynamics :{

dXi(t) = dBi(t)− 1
2U ′(Xi(t)) dt− β

2∇ihi(X(t)) dt , i ∈ Zd, t ≥ 0
X(0) ' ν

(31)

This dynamics is a small perturbation of a free system, which is furthermore supposed to
have nice ergodic properties, in such a way that its behavior for large times is close to the
stationary one.

The self potential U , supposed to be a C2-function, is called ultracontractive if the
semi-group associated to the one-dimensional free dynamics dx(t) = dB(t)− 1

2U ′(x(t)) dt,
where B is a real-valued Brownian motion, is ultracontractive. We denote by m the unique
initial distribution on R which makes the process x(·) stationary; one has

m(dξ) =
1
Z

e−U(ξ) dξ, ξ ∈ R.

Let us notice that there exists in the literature several types of conditions which imply
the ultracontractivity of U . Let us cite one set which is useful (cf. Theorem 1.4 in [?]) :

U ′′ − 1
2
(U ′)2 is bounded from above, 0 < lim|ξ|→∞U ′′(ξ) and

∫ ∞ 1
U ′(ξ)

dξ < +∞.

A typical example of such self-potential is given by U(ξ) = |ξ|s+2 for some s > 0.

In the previous section, no particular assumption was given on the set of Gibbs mea-
sures G(ϕ̃, dx), which contains the initial distribution ν. Thus G(ϕ̃, dx) could be a singleton
or it could have more than one element (phase transition). In the contrary, in this section,
to control the evolution of the interaction at each time t we use techniques involving Do-
brushin’s uniqueness condition, and therefore, we should suppose that the initial measure
ν is the unique Gibbs measure associated to some interaction ϕ̃: G(ϕ̃, m) = {ν}.
Let us now introduce two definitions.

We say that an interaction φ on RZd
satisfies the strong Dobrushin’s condition if

it is absolutely summable and if the following inequality holds :

(SDC) supi∈Zd

∑
Λ3i(#Λ− 1) supx,y∈RΛ |φΛ(x)− φΛ(y)| < 2.

In [?] such an interaction is called a ”high temperature interaction”. It is well known
that if an interaction φ satisfies (SDC), then it satisfies the Dobrushin’s uniqueness con-
dition which implies that G(φ,m) contains at most one element (cf. for example [?],
Proposition (8.8)).

We can now state our result.
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Theorem 2 Let Qν be the law on Ω of the infinite-dimensional diffusion solution of (??)
where ν ∈ G(ϕ̃, m) with support included in l1(γ), with γ = (e−α|i|)i∈Zd, α > 0. Let us
moreover suppose that

• the self-potential U is ultracontractive,

• the initial interaction ϕ̃ satisfies (SDC), and

• the dynamical interaction ϕ is of finite range (FR), regular bounded (RB) and sat-
isfies the following assumption

sup
Λ⊂Zd

sup
i∈Λ

sup
x∈RΛ

|U ′(xi).∇iϕΛ(x)| < +∞. (32)

Then, there exists β0 > 0 depending only on ϕ̃ and ϕ such that, for any β ≤ β0 and for
all t ≥ 0,

νt = Qν ◦X(t)−1 ∈ G(ϕt,m)

where ϕt is an absolutely summable (AS) interaction.

Condition (??) is a balance condition between the self-potential U and the dynamical
potential ϕ. This is satisfied for example for any potential ϕ which is constant at infinity.

Proof :
Let us first remark that for ϕ̃ small enough, we could use similar techniques as in the proof
of Theorem ??, writing the cluster expansion now no more with respect to the time but
with respect to both small parameters ‖ϕ̃‖∞ and β. But we want to obtain more than
a perturbative result around the free stationary case. Therefore, when ϕ̃ is not supposed
to be close to 0, we have to develop other techniques than before. To this aim let us
introduce some more notations.
As in the last section, the infinite-dimensional dynamics (??) is obtained as limit of the
following finite dimensional dynamics : for Λ ⊂ Zd, Λ finite ,

dXi(t) = dBi(t)−
1
2
U ′(Xi(t)) dt− β

2
∇ihi,Λ(X(t)) dt , i ∈ Λ, t ≥ 0. (33)

For any x, y ∈ RZd
, Λ ⊂ Zd and I = [a, b], we use the notations :

- Qν (resp. Qx) : law on Ω of the solution of (??) with initial distribution ν (resp. δx).
- QxΛ

Λ : law on C(R+, R)Λ of the solution of (??) with initial deterministic condition xΛ.
- P x : law on Ω = C(R+, R)Zd

of the solution of the free system ((??) with β = 0) and
initial condition x; it is the infinite product of the one-dimensional free dynamics P xi

i ,
each of one having at time t pt(xi, ·) as density function with respect to m.
- P xΛ

Λ : law on C(R+, R)Λ of the solution of (??) when β = 0 with initial condition xΛ.
- P x,y

Λ,I : law on C(I, R)Λ of the solution of (??) when β = 0 conditioned to the initial and
the final values : XΛ(a) = xΛ et XΛ(b) = yΛ

Step 1 : Density of QxΛ
Λ ◦X(t)−1 with respect to P xΛ

Λ ◦X(t)−1 on RΛ

Our first aim is to obtain this density as an exponential function of an uniformly
convergent sum of interactions. By Girsanov theorem, QxΛ

Λ restricted to the canonical
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filtration at time t is absolutely continuous with respect to P xΛ
Λ with density denoted by

FΛ. Making similar computations as in the proof of (??), one obtains

FΛ(XΛ) = exp
(
− 1

2
βhΛ,∅(XΛ(t)) +

1
2
βhΛ,∅(XΛ(0)) +

∑
i∈Λ

∫ t

0

(1
4
β∆ihΛ,∅(XΛ(s))

−1
8
β2(∇ihΛ,∅)

2(XΛ(s)) +
1
4
βU ′(Xi(s))∇ihΛ,∅(XΛ(s))

)
ds

)
= exp

(
− 1

2
βhΛ,∅(XΛ(t)) +

1
2
βhΛ,∅(XΛ(0)) +

∫ t

0

∑
A⊂Λ

gA(X(s))ds
)
, (34)

where for A ⊂ Zd, gA is the following FA-measurable function on RZd

gA(x) =
1
4
β
∑
i∈A

(
∆iϕA(xA) + U ′(xi)∇iϕA(xA)

)
− 1

8
β2

∑
B,C⊂A
B∪C=A
B∩C 6=∅

∑
i∈B∩C

∇iϕB(xB)∇iϕC(xC).

Moreover, due to the assumptions on ϕ and (??) there exists a constant C̃ > 0 such that

∀A ⊂ Zd, ‖gA‖∞ ≤ C̃β. (35)

From (??), one deduces that

QxΛ
Λ ◦X(t)−1

P xΛ
Λ ◦X(t)−1

(yΛ) = e−
1
2
β(hΛ,∅(yΛ)−βhΛ,∅(xΛ))fΛ(x, y), (36)

with

fΛ(x, y) = EP x,y
Λ,[0,t]

[
exp

(∫ t

0

∑
A⊂Λ

gA(X(s))ds
)]

. (37)

We are now looking for a cluster representation of fΛ(x, y) for β small.
We first work at the space-time level as in [?] or [?] (cf. also [?] or [?]); Clusters are
then subsets of Zd × N. In Step 2 , we will project this representation at times 0 and t,
obtaining clusters in Zd × {0, 1}.
Let us introduce the notations we need. Let N ∈ N large enough is such a way that for
#A > N, gA ≡ 0. Such a number N exists since gA is of finite range by constrution.
Let V a finite subset of Zd such that for any A ⊂ Zd with gA 6= 0 then A ⊂ ∩j∈A(V + j).
Let us define a subclass of finite volumes in Zd × N :

D =
{
A = A× {j, j + 1} ⊂ Zd × N : 1 ≤ #A ≤ N and A ⊂ ∩i∈A(V + i)

}
.

A finite set γ = {A1,A2, . . . ,An}, n ≥ 1, of elements of D is a cluster. It is called
connected if for any Ai,Aj ∈ γ, there exists a sequence i = i1, i2, . . . , im = j such that
Ai1 ∩Ai2 6= ∅, Ai2 ∩Ai3 6= ∅, . . ., Aim−1 ∩Aim 6= ∅. We call support of the cluster γ the
subset of Zd × N equal to

⋃n
l=1 Al and denote it by supp(γ). The integer number |γ| is

the cardinality of the support of γ.
We denote by A the set of connected clusters and AΛ×[0,M ] the subset of A which contains
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the clusters whose supports are included in Λ × {0, · · · ,M} ⊂ Zd × N. A collection of
clusters γ1, γ2, . . . , γn is called compatible if their associated supports are disjoint. We
denote by LΛ×[0,M ] the set of all compatible collections of non-empty clusters belonging
to AΛ×[0,M ].
We can now start the expansion of the expression (??).
Let M be some integer which we will fix later, and T = t

M . We decompose the time
interval [0, t] into M subintervals Ij = [jT ; (j + 1)T ], j = 0, · · · ,M − 1. We obtain, taking
x0 = x,

fΛ(x, y) =
∫ ∫

. . .

∫ ∏
A⊂Λ

M−1∏
j=0

exp
(∫

Ij

gA(X(s))ds
)M−2∏

j=0

∏
i∈Λ

pT (x(j)
i , x

(j+1)
i )

P x,x(1)

Λ,I0
(dX)P x(1),x(2)

Λ,I1
(dX) . . . P x(M−1),y

Λ,IM−1
(dX) m⊗Λ(dx(1)) . . .m⊗Λ(dx(M−1)),

=
∫ ∫

. . .

∫ (
1 +

∞∑
n=0

∑
{γ1,...,γn}∈LΛ×[0,M ]

KM (γ1)(X)KM (γ2)(X) . . .KM (γn)(X)

)

P x,x(1)

Λ,I0
(dX)P x(1),x(2)

Λ,I1
(dX) . . . P x(M−1),y

Λ,IM−1
(dX) m⊗Λ(dx(1)) . . .m⊗Λ(dx(M−1)).

KM (γ) has the following form :

KM (γ)(X) =
∏

{i}×{j,j+1}∈γ
j≤M−2

(
pT

(
Xi

(
jT
)
, Xi

(
(j + 1)T

))
exp

(∫
Ij

gi(X(s))ds
)
− 1

)

∏
A×{j,j+1}∈γ

#A≥2
j≤M−2

(
exp

(∫
Ij

gA(X(s))ds
)
− 1

)

∏
A×{M−1,M}∈γ

(
exp

(∫
IM−1

gA(X(s))ds
)
− 1

)
.

We denote by ε(T ) the fluctuation of the kernel pT around the equilibrium :

ε(T ) = sup
a,b∈R

|pT (a, b)− 1|. (38)

(Let us recall that by definition, pt is the density function with respect to the stationary
measure.)
Since U is ultracontractive, one has

lim
T→∞

ε(T ) = 0. (39)

Let us choose β̃0 and T0 such that for any β < β̃0, eC̃T0β − 1 ≤ 1. We consider now both
cases, t ≤ T0 and t > T0 separately.
For t ≤ T0 we fix the integer M equal to 1. So T = t and we only have to control K1(γ),
which has the following simple form :∣∣∣K1(γ)(X)

∣∣∣ = ∣∣∣ ∏
A×{0,1}∈γ

(
exp

(∫
[0,t]

gA(X(s))ds
)
− 1
)∣∣∣ ≤ (eC̃T0β − 1

) |γ|
2#V

.
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For t > T0 we fix the integer M equal to [t
√

β] + 1, which is the smallest integer strictly
larger than t

√
β; so T = t

[t
√

β]+1
, which tends to +∞ when β vanishes. For β small enough,

we obtain

|KM (γ)(X)| ≤
((

1 + ε(T )
)
eC̃Tβ − 1

) |γ|
2#V

≤ 2
((

1 + ε(
1√
β

)
)
eC̃
√

β − 1
) |γ|

2#V

≤ λ(β)|γ|, (40)

where β 7→ λ(β) tends to 0 as β goes to 0. Thus,

fΛ(x, y) = 1 +
∞∑

n=0

∑
{γ1,...,γn}∈LΛ×[0,M ]

Kx,y
M (γ1)K

x,y
M (γ2) . . .Kx,y

M (γn) (41)

where

Kx,y
M (γ) =

∫
. . .

∫
KM (γ)(X)P x,x(1)

Λ,I0
(dX) . . . P x(M−1),y

Λ,IM−1
(dX) m⊗Λ(dx(1)) . . .m⊗Λ(dx(M−1)),

and inserting (??) we obtain

sup
x,y,t

|Kx,y
M (γ)| ≤ λ(β)|γ|.

As in the last section, this implies that for any cluster γ ∈ A and for β small enough,

sup
x,y∈RZd ,t>0

∑
γ′∈A:

supp(γ)∩supp(γ′) 6=∅

|Kx,y
M (γ′)|e|γ′| ≤ |γ|.

For β small enough, following Kotecký and Preiss, one obtains the following expansion for
the logarithmus of fΛ(x, y) :

ln
(
fΛ(x, y)

)
=

∞∑
n=0

∑
{γ1,...,γn}∈MΛ×[0,M ]

a(γ1, . . . , γn)Kx,y
M (γ1)K

x,y
M (γ2) . . .Kx,y

M (γn).

We now leave the space-time level and go to the level of the projections at times 0 and t,
obtaining :

ln
(
fΛ(x, y)

)
=
∑
∆⊂Λ

∞∑
n=0

∑
{γ1,...γn}∈MΛ×[0,M ]

Tr(γ1,...,γn)=∆

a(γ1, . . . , γn)Kx,y
M (γ1) . . .Kx,y

M (γn),

where Tr(γ1, . . . , γn) denotes the spatial trace of the cluster γ1, . . . , γn, that is the projec-
tion of its support on Zd.
Thus from (??),

Qx
Λ ◦X(t)−1

P x
Λ ◦X(t)−1

(yΛ) = e−
∑

∆⊂Λ Φβ
∆(x,y) (42)
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where

Φβ
∆(x, y) =

1
2
β
(
ϕ∆(y)− ϕ∆(x)

)
−

∞∑
n=0

∑
{γ1,...γn}∈MΛ×[0,M ]

Tr(γ1,...,γn)=∆

a(γ1, . . . , γn)Kx,y
M (γ1) . . .Kx,y

M (γn). (43)

We note some important properties of the function Φβ.

Lemma 8 The function Φβ
∆(x, y) defined on RZd × RZd

is indeed F∆ × F∆-measurable
and satisfies

lim
β→0

sup
i∈Zd

∑
∆3i

(#∆− 1)‖Φβ
∆‖∞ = 0.

Proof :
The measurability property of Φβ

∆ is a consequence of the following observation : Kx,y
M (γ)

depend on x (resp. on y) only on supp(γ) ∩ (Zd × {0}) ⊂ Tr(γ) = ∆ (resp. on supp(γ) ∩
(Zd × {t}) ⊂ ∆, so that in fact Φβ

∆(x, y) = Φβ
∆(x∆, y∆).

Moreover, Kotecký and Preiss proved in [?] the following exponential decrease of Φβ
∆ with

respect to ∆: For any a ∈ R, there exists βa > 0 such that for all β ≤ βa one has

sup
i∈Zd

sup
t∈R+

∑
∆3i

ea#∆‖Φβ
∆‖∞ ≤ 1. (44)

This implies that, uniformly in i and t, the sum
∑

∆3i(#∆ − 1)‖Φβ
∆‖∞ converges for β

small enough. Since limβ→0 ‖Φβ
∆‖∞ = 0, we obtain the desired result. �

Step 2 : Study of Qν = Qν ◦ (X(0), X(t))−1 on RZd×{0,1} and its Gibbsian properties

In order to prove the Gibbsianness of νt = Qν ◦X(t)−1, we study as intermediate step
Qν = Qν ◦ (X(0), X(t))−1, the joint projection of Qν at time 0 and t on the space RS ,
where S is the so-called bi-space : S = Zd × {0, 1}. (In the framework of Probabilistic
Cellular Automata, the idea to analyse the properties of the process on a bi-space was
already powerful, cf. [?]).

Lemma 9 For β sufficiently small Qν is a Gibbs measure on RS with reference measure
m and associated Hamiltonian function H which is defined as follows : if we denote by
(∆,∆′) the subset of S equal to (∆× {0}) ∪ (∆′ × {1}),

H(∆,∆′)(x, y) = h̃∆(x)−
∑

i∈∆∪∆′

ln pt(xi, yi) +
∑

A⊂Zd

A∩(∆∪∆′) 6=∅

Φβ
A(x, y). (45)

Proof :
Since the initial interaction ϕ̃ satisfies the strong Dobrushin’s condition (SDC), ν is the
unique element in G(ϕ̃, m); it can be approximated by the sequence of finite volume
specifications with free boundary conditions : (νΛ = 1

zΛ
exp−h̃Λ,∅m⊗Λ)Λ⊂Zd . Let QνΛ

Λ be
the law on C(R+, R)Λ of the solution of (??) with initial distribution νΛ. Similarly to the
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proof of Lemma ??, for any bounded regular local functional G , the sequence
∫

G dQνΛ
Λ

converges towards
∫

G dQν when Λ tends to Zd. In particular,

lim
Λ→Zd

∫
G(X(0), X(t)) dQνΛ

Λ =
∫

G(X(0), X(t)) dQν ,

which means that the joint projection of QνΛ
Λ at times 0 and t on the space (R2)Λ con-

verges towards Qν , the joint projection of Qν at times 0 and t, considered as probability
measure on (R2)Zd

. Now, for β sufficiently small, using Girsanov formula and (??), it is
clear that the family (QνΛ

Λ )Λ is the Gibbsian specification on (R2)Zd
with free boundary

condition associated to the reference measure on R2 m(dξ, dζ) = pt(ξ, ζ)m(dξ)m(dζ) and
the interaction

Ψ∆(x, y) = ϕ̃∆(x) + Φβ
∆(x, y), (x, y) ∈ (R2)Zd

,∆ ⊂ Zd.

(This function on (R2)Zd
is indeed an interaction due to the measurability property of

Φβ
∆ proved in Lemma ??.) Since ϕ̃ satisfies the strong Dobrushin’s condition (SDC) and,

by Lemma ??,
∑

∆3i(#∆ − 1)‖Φβ
∆‖∞ is as small as required for β small enough, the

interaction Ψ satisfies also Condition (SDC) for β small. This implies in particular that
the set G(Ψ,m) of Gibbs measures on (R2)Zd

contains at most one element; this element
is nothing but Qν , limit of the free boundary specifications (see [?] Example (4.20) for the
relation between free boundary conditions and usual boundary conditions.) The measure
Qν thus satisfies (DLR) equations with the Hamiltonian function associated to Ψ and
the reference measure m. If we now consider the natural bijection between (R2)Zd

and
RS , Qν is a measure on RS satisfying (DLR) equations for any finite volume of the type
(∆,∆) ⊂ S, with Hamiltonian function H(∆,∆) and reference measure m. This is enough
to deduce the desired result, since any finite volume (∆,∆′) ⊂ S can be included in some
symmetrical volume (∆′′,∆′′) ⊂ S. �
We now condition the measure Qν to finite-dimensional projections at time t. Let us
denote by Qν,yΛc the probability measure Qν(·|XΛc(t) = yΛc), which is defined for any
finite subset Λ of Zd, and for νt-a.a. y. The next lemma gives a Gibbsian description of
this measure. Its simple proof is omitted.

Lemma 10 The probability measure Qν,yΛc , conditional law of Qν ◦ (X(0), X(t))−1 given
{XΛc(t) = yΛc}, is a Gibbs measure on RZd×{0}∪Λ×{1} with reference measure m and
Hamiltonian function HyΛc defined for (∆,∆′) ⊂ Zd × Λ by

HyΛc

(∆,∆′)(x, zΛ) = H(∆,∆′)(x, zΛyΛc), x ∈ RZd
, zΛ ∈ RΛ.

Qν,yΛc can be decoupled as follows :

Qν,yΛc (dx, dzΛ) =
1

ZΛ(yΛc)

∏
i∈Λ

pt(xi, zi) exp
(
−

∑
A⊂Zd

A∩Λ6=∅

Φβ
A(x, zΛyΛc)

)
m⊗Λ(dzΛ)Q̄ν,yΛc (dx), (46)

where Q̄ν,yΛc is a probability measure on RZd
. Furthermore, Q̄ν,yΛc belongs to G(Φ̄yΛc ,m)

where the interaction Φ̄yΛc is defined for x ∈ RZd
by :{

Φ̄yΛc

i (x) = ϕ̃i(xi)− 1Ii∈Λc ln pt(xi, yi), i ∈ Zd

Φ̄yΛc

∆ (x) = ϕ̃∆(x) + 1I∆∩Λ=∅Φ
β
∆(x, yΛc), for ∆ ⊂ Zd,#∆ ≥ 2.

(47)
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In the next lemma we show that uniformly (with respect to Λ and y) the local specifications
of Q̄ν,yΛc converge to this Gibbs measure.

Lemma 11 For β sufficiently small and t > 0, for Λ ⊂ Zd and for all y ∈ RZd
, the set

G(Φ̄yΛc ,m) contains a unique element denoted by Q̄ν,yΛc . Moreover, for any ∆ ⊂ Zd,

lim
∆′↗Zd

sup
A∈F∆

sup
Λ⊂Zd

sup
y∈RZd

sup
x∈RZd

∣∣∣Q̄ν,yΛc (A)− Q̄ν,yΛc (A|x∆′c)
∣∣∣ = 0. (48)

Proof: Considering the form of the interaction potential Φ̄yΛc given in (??), it is obvious,
as in the proof of Lemma ??, that for β sufficiently small, Φ̄yΛc satisfies (SDC). Therefore
the set G(Φ̄yΛc ,m) contains at most one element. The strong convergence of the local spec-
ifications to the limiting Gibbs measure is a classical result, which is proved for example
in [?], Theorem 8.23. The uniformity in Λ and y in (??) comes from the same uniformity
obtained in the (SDC). �

Remark 2 Since Q̄ν,yΛc is well defined for any y ∈ RZd
, Qν,yΛc is also defined by (??) not

only for νt-a.a. y but for all y. This is a regular version of the conditional probabilities
Qν(dx dy|yΛc).

We now observe that, for a.a. yΛc ∈ RΛc
, νt(·|yΛc) is the marginal on RZd

of Qν,yΛc . This
means that, for any regular bounded function g on RΛ,∫

g(zΛ)νt(dzΛ|yΛc) =
∫

g(zΛ)Qν,yΛc (dx, dzΛ).

From Lemma ?? and Lemma ??, we obtain the existence of a regular density fΛ for the
conditional probabilities νt(·|yΛc) :

νt(dzΛ|yΛc) = fΛ(zΛyΛc) m⊗Λ(dzΛ),

with
fΛ(y) =

∫
RZd

1
ZΛ(yΛc)

∏
i∈Λ

pt(xi, yi) exp
(
−

∑
A⊂Zd

A∩Λ6=∅

Φβ
A(x, y)

)
Q̄ν,yΛc (dx). (49)

Let us remark that fΛ is well defined on the full space RZd
.

Step 3 : Use of Kozlov representation theorem

To complete the proof of Theorem ??, it is enough to show that the local densities fΛ

- expressed in (??) - of the family of conditional probabilities νt(·|FΛc) are built on an
absolutely summable interaction potential. Unfortunately, in this context, we cannot write
explicitely the interaction as we did in the section 3. We will only prove its existence and
regularity, using the pioneering work of Kozlov. In [?], Theorem 1, he proved the existence
of an absolutely summable interaction under the assumption that for any Λ ⊂ Zd, fΛ

satisfies the following properties :

(boundedness) ∃C1, C2 > 0 such that C1 ≤ inf
y∈RZd

fΛ(y) ≤ sup
y∈RZd

fΛ(y) ≤ C2,

(quasilocality) lim
∆↗Zd

sup
y,ỹ∈RZd

y∆=ỹ∆

|fΛ(y)− fΛ(ỹ)| = 0.
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The first condition is equivalent to the uniform boundedness of ln(fΛ) and the second one
is the uniform quasilocality.
Proof of the boundedness of fΛ : Since, from Lemma ??, Q̄ν,yΛc is a Gibbs measure with
associated interaction Φ̄yΛc , one can desintegrate it on FΛ and obtains

fΛ(y) =
∫

f̄Λ(xΛc , y) Q̄ν,yΛc (dx) (50)

where

f̄Λ(xΛc , y) =
∫

RΛ

1
ZΛ(yΛc)z̃Λ(xΛc)

∏
i∈Λ

pt(xi, yi) exp
(
− h̃Λ(x)−

∑
A⊂Zd

A∩Λ6=∅

Φβ
A(x, y)

)
m⊗Λ(dxΛ),

with

z̃Λ(xΛc) =
∫

exp(−h̃Λ(x))m⊗Λ(dxΛ),

and ZΛ(yΛc) =
∫ ∏

i∈Λ

pt(xi, yi) exp
(
−

∑
A⊂Zd

A∩Λ6=∅

Φβ
A(x, y)

)
m⊗Λ(dyΛ)Q̄ν,yΛc (dx).

By assumption, the initial Hamiltonian h̃ is uniformly bounded; then there exists c1 > 0
and c2 > 0 such that

∀x ∈ RZd
, c1 ≤

1
z̃Λ(xΛc)

exp(−h̃Λ(x)) ≤ c2.

On the other hand, from Lemma ??, it is clear that for β small enough, there exists c3 > 0
and c4 > 0 such that

∀x, y ∈ RZd
, c3 ≤ exp(−

∑
A⊂Zd

A∩Λ6=∅

Φβ
A(x, y)

)
) ≤ c4.

Then, for any yΛc ∈ RΛc
,

c3

∫ ∏
i∈Λ

pt(xi, yi)m⊗Λ(dyΛ)Q̄ν,yΛc (dx) ≤ ZΛ(yΛc) ≤ c4

∫ ∏
i∈Λ

pt(xi, yi)m⊗Λ(dyΛ)Q̄ν,yΛc (dx).

Since, for any i ∈ Zd and xi ∈ R,
∫

pt(xi, yi) m(dyi) = 1, we obtain c3 ≤ ZΛ(yΛc) ≤ c4.
This bound implies that, for all y ∈ RZd

,
c1c3

c4
≤ fΛ(y) ≤ c2c4

c3
.

Proof of the quasilocality of fΛ :
Above, we have shown that the function f̄Λ defined on RΛc × RZd

is uniformly bounded.
Furthermore, it satisfies

lim
∆↗Zd

sup
y,ỹ∈RZd

y∆=ỹ∆

sup
x∈RZd

|f̄Λ(xΛc , y)− f̄Λ(xΛc , ỹ)| = 0.

Using the integral representation (??) and (??), one obtains that fΛ itself is quasilocal.
�
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Remark 3 If we remove the ultracontractivity assumption on the self potential U , the
result of Theorem ?? remains valid, that is for any fixed t, νt is strong Gibbsian for
β ≤ β0, but now the critical value β0 depends on t.

5 Corollaries and additional remarks

We proved in the previous sections results on propagation of Gibbsianness. In this last
section, we are interested by the propagation of other properties. Does the Strong Do-
brushin condition, or the uniqueness of Gibbs measures, or the phase transition property
propagate between time 0 and time t?
We begin with a direct corollary of Theorem ??.

Corollary 3 Let us consider the system (??) under the assumptions of Theorem ??. If
the initial interaction ϕ̃ satisfies (SDC), then for t small enough, the interaction ϕt at
time t satisfies (SDC) too.

Proof :
The representation (??) shows that ϕt is a perturbation of ϕ̃. Similarly as in Lemma ??,
we obtain that for t small enough ϕt satisfies (SDC). �

In the case of free systems, we can even say something for times t not necessarily small.
Let us define the following decoupled dynamics :{

dXi(t) = dBi(t)− 1
2U ′(Xi(t)) dt , i ∈ Zd, t ≥ 0

X(0) ' ν
(51)

where ν is a Gibbs measure in G(ϕ̃, m); U is supposed to be C2 and the measure e−Udξ
can be normalised into m(dξ) = 1

Z e−U(ξ)dξ.

Proposition 4 If we consider the free system (??) where the initial interaction ϕ̃ satisfies
(SDC), then for any time t ≥ 0, the set G(ϕt,m) is reduced to the unique Gibbs measure
equal to the law of X(t).
Moreover, if the dynamical self interaction U is ultracontractive, then for t large enough,
the interaction at time t ϕt satisfies Dobrushin uniqueness criterium.

Proof:
Let µ be a Gibbs measure in G(ϕt,m). Suppose that µ is extremal; then, as recalled in
Lemma ??, µ is the weak limit of its local specifications, that is : there exists y in RZd

such that µ = limΛ↗Zd fΛ(·yΛc)m⊗Λ ⊗ δyΛc , with fΛ defined in (??). But the expression
(??) is now much simpler than in Section 4 since the system is free (β = 0). In this special
case, the local specification fΛ of νt in Λ has the following simple expression :

fΛ(y) =
∫ ∏

i∈Λ

pt(xi, yi)Q̄ν,yΛc (dx). (52)

So, for all ∆ ⊂ Zd and all bounded regular F∆-measurable function g , we have∫
g(z∆)µ(dz) = lim

Λ↗Zd

∫
g(z∆)

∫ ∏
i∈Λ

pt(xi, zi)Q̄ν,yΛc (dx) m⊗Λ(dzΛ)

= lim
Λ↗Zd

∫ ∫
g(z∆)

∏
i∈∆

pt(xi, zi) m⊗∆(dz∆) Q̄ν,yΛc (dx),
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since for every i ∈ Λ\∆,
∫

pt(xi, zi)m(dzi) = 1.
On the other hand, Lemma ??, which holds for Λ = Zd too, shows the weak con-
vergence of Q̄ν,yΛc against Q̄ν,∅, which is equal to ν when β = 0. Since the function
x 7→

∫
g(z∆)

∏
i∈∆ pt(xi, zi)m∆(dy∆) is bounded and local, we then get∫

g(z∆)µ(dz) =
∫ ∫

g(z∆)
∏
i∈∆

pt(xi, zi)m⊗∆(dz∆)ν(dx).

The preceding equality shows that locally, µ is nothing but the measure ν transported by
the free dynamics. Thus, µ does not depend on the boundary condition y. This proves the
uniqueness of the extremal Gibbs measures in G(ϕt,m). Thus the set of Gibbs measures
is reduced to one element too. The first part of the proposition is proved.
We now prove the second assertion. For fixed t > 0, one can define as usually Dobrushin’s
coefficients (C(t)

i,j )i,j∈Zd associated to the interaction ϕt by :

C
(t)
i,j = sup{‖νt(dyi|yZd\i)− νt(dyi|ỹZd\i)‖var : y, ỹ ∈ RZd

, yZd\j = ỹZd\j}

=
1
2

sup{
∫
|fi(y)− fi(ỹ)|m(dyi) : y, ỹ ∈ RZd

, yZd\j = ỹZd\j}

with, as in (??), fi(y) = f{i}(y) =
∫

pt(xi, yi)Q̄
ν,yZd\i(dx). To simplify, the Dobrushin’s

coefficients of ϕ̃ (time 0) are denoted by (Ci,j)i,j∈Zd .
The potentiel ϕt satisfies the Dobrushin Uniqueness Criterion if

(DUC) C(t) := supi∈Zd

∑
j∈Zd C

(t)
i,j < 1.

Since ϕ̃ satisfies (SDC), it’s well known (see for example Proposition 8.8 in [?]) that
ϕ̃ satisfies (DUC) too, that is C := supi∈Zd

∑
j∈Zd Ci,j < 1. Let us prove that ϕt also

satisfies (DUC) for t large enough. From Lemma ??, Q̄
ν,yZd\i and Q̄

ν,ỹZd\i are Gibbs mea-
sures. Using the comparison Theorem 8.20 in [?] which gives bounds for the integral of a
function under different Gibbs measures, one obtains

|fi(y)− fi(ỹ)| ≤ 2ε(t)Di,j

∫
‖Q̄ν,yZd\i(dxj |xZd\j)− Q̄

ν,ỹZd\i(dxj |xZd\j)‖var Q̄
ν,yZd\i(dx)

≤ 2ε(t)Di,j
1
2

∫ ∫
e−h̃j(x)

∣∣∣∣∣pt(xj , yj)
zj(x, yj)

− pt(xj , ỹj)
zj(x, ỹj)

∣∣∣∣∣m(dxj) Q̄
ν,yZd\i(dx),

where ε(t) is defined in (??), Di,j is the (i, j)-coefficient of the infinite-dimensional matrix
D =

∑
n∈N Cn (C is the matrix (Ci,j)i,j∈Zd) and

zj(x, yj) =
∫

e−h̃j(x)pt(xj , yj)m(dxj).

If we denote by zj(x) =
∫

e−h̃j(x)m(dxj) we then obtain following inequalities :

(1− ε(t))zj(x) ≤ zj(x, yj) ≤ (1 + ε(t))zj(x), (53)

|zj(x, yj)− zj(x, ỹj)| ≤ 2ε(t)zj(x). (54)
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Thus,
|fi(y)− fi(ỹ)| ≤ ε(t)Di,j(A + B),

with
A =

∫ ∫
e−hj(x) 1

zj(x, yj)

∣∣pt(xj , yj)− pt(xj , ỹj)
∣∣m(dxj) Q̄

ν,yZd\i(dx),

and

B =
∫ ∫

e−hj(x)pt(xj , ỹj)
∣∣∣∣ 1
zj(x, yj)

− 1
zj(x, ỹj)

∣∣∣∣m(dxj) Q̄
ν,yZd\i(dx).

Using inequalities (??) and (??) we obtain

A ≤ 2ε(t)
∫ ∫

e−hj(x)

zj(x, yj)
m(dxj)Q̄

ν,yZd\i(dx)

≤ 2ε(t)
1− ε(t)

∫ ∫
e−hj(x)

zj(x)
m(dxj) Q̄

ν,yZd\i(dx)

≤ 2ε(t)
1− ε(t)

.

(For t large enough, 1− ε(t) is greater than 0.)
On the other hand,

B ≤
∫ ∫

e−hj(x)

zj(x, ỹj)
pt(xj , ỹj)

∣∣zj(x, ỹj)− zj(x, yj)
∣∣

zj(x, yj)
m(dxj) Q̄

ν,yZd\i(dx)

≤
∫ ∫

e−hj(x)

zj(x, ỹj)
pt(xj , ỹj)

2ε(t)
1− ε(t)

m(dxj) Q̄
ν,yZd\i(dx)

≤ 2ε(t)
1− ε(t)

.

Finally, we obtain the uniform bound |fi(y)− fi(ỹ)| ≤ 4ε(t)2

1−ε(t)Di,j . Thus, for all i ∈ N,

C(t) ≤ 2ε(t)2

1− ε(t)

∑
j∈N

Di,j ≤
2ε(t)2

1− ε(t)
1

1− C
.

Since ε(t) vanishes when t goes to infinity, C(t) is strictly lower than 1 for t large enough.
�

Let us go back to the general system (??), with a true interaction in the dynamics.
We know that for small times the set G(ϕt,m) contains a unique Gibbs measure. But
it is not clear whether this property remains true for any time. What we prove in the
following proposition, is that it is at least true for t large enough. Unfortunately, unlike
the preceding Proposition, we do not know if the potentiel ϕt satisfies the uniqueness
criteria (DUC) or (SDC).

Proposition 5 Under the assumptions of Theorem ??, for β small enough and t large
enough, the set G(ϕt,m) contains a unique Gibbs measure, the law at time t of the solution
of (??).
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Proof :
For β small enough, the interaction potential on RS associated to the Hamiltonian func-
tion H defined in (??) is the sum of the initial potential plus a two-body potential induced
by pt and a dynamical potential defined by the cluster expansion. By assumption, the
first one satifies (SDC); the second one vanishes when t goes to infinity, since U is ultra-
contractive and the third one is small in the sense of Lemma ??. So, for β small enough
and t large enough, the potential associated to H satisfies (SDC) on the bi-space S. Thus,
the specifications of H are global in the sense defined in [?] (see also [?] and [?]). This
means that (DLR)-equations hold also true for unbounded subsets of S. Similarly to the
beginning of the proof of Proposition ??, we can show that each extremal measure in
G(ϕt,m) is the limit of the projections on RZd×{1} of the global specifications associated
to H for a fixed boundary condition y. The uniqueness of such extremal Gibbs measures
is then a consequence of the globality property. We conclude that G(ϕt,m) is reduced to
the measure νt. �

Let us finish this section with a result about propagation of non-uniqueness.

Proposition 6 Let us consider the system (??) under the assumptions of Theorem ??. If
#G(ϕ̃, dx) > 1 (phase transition occurs at time 0) then, for t small enough #G(ϕt, dx) > 1
too, that is the phase transition propagates.

Proof :
Suppose #G(ϕ̃, dx) > 1; let ν1 and ν2 be two distinct measures in G(ϕ̃, dx). Thanks to
Theorem ?? , for t small enough, νt

1 and νt
2 are in the same set of Gibbs measures G(ϕt, dx).

It is clear that νt
1 (respectively νt

2) converges weakly to ν1 (respectively to ν2) when t goes
to 0. Thus, for t small enough νt

1 and νt
2 are different measures. �
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[18] C. Külske and F. Redig, Loss without recovery of Gibbsianness during diffusion of
continuous spins, Preprint 2004

[19] A. Le Ny and F. Redig, Short time conservation of Gibbsianness under local stochastic
evolutions, J. Stat. Phys. 109, 5-6 (2002), 1073-1090.
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