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1 Introduction

Let Ω = C(IR, IR)ZZ
d

be the configuration space, and F be the canonical σ-field in it. For ω ∈ Ω
we write ω = (ωi(t))i∈ZZd,t∈IR. Suppose we are given the following infinite-dimensional stochastic
differential equation (s.d.e.)

dXi(t) =
(
− 1

2
ϕ′(Xi(t)) + b(θi,tX)

)
dt+ dBi(t) , i ∈ ZZd, t ∈ IR (1.1)

where

• ϕ is a suitable self potential, to be chosen in a class that will be defined later (see Section
4);

• b : C((−∞, 0], IR)ZZ
d → IR is a measurable bounded local function, say b(ω) = b(ωΛ0),

where ωΛ0 is the restriction of ω to a finite subset Λ0 ⊂ ZZd of space-coordinates, containing
the origin;

• θi,t is the space-time translation on Ω given by (θi,tω)j(s) = ωi+j(t+ s);

• (Bi)i∈ZZd is a sequence of independent real valued Brownian motions.

Such systems restricted to a finite time-interval (say [0, 1]), with b(ω) = b(ω(0)) (Markovian
drift), and when b is the gradient of a smooth Hamilton function (see Section 6), were described
as lattice Gibbs states on C([0, 1], IR)ZZ

d
first by Deuschel in [6, 7] and later in [2].

Our aim is to deal with possibly non-Markovian and non-gradient systems in an infinite time-
interval by using the concept of space-time Gibbs state introduced in [19]: we describe weak
solutions of (1.1) as space-time Gibbs states on Ω, and we give a variational characterization of
them.

To be more precise, let Q ∈ Ps(Ω) be a space-time invariant probability measure on (Ω,F),
and b be a given function as above. Moreover we denote by P the reference measure in Ps(Ω),
law of the stationary solution of equation (1.1) with b ≡ 0. - The assumptions that will be given
(see Section 4) on ϕ will guarantee existence and uniqueness of such measure, as well as good
ergodic properties -. Under the integrability condition

H(Q) < +∞,

where H denotes the specific entropy of Q with respect to P (see Section 4), our main result is
the equivalence of the following assertions:

[A ] Q is a stationary weak solution of the s.d.e. (1.1).

[B ] Q is a space-time invariant Gibbs state for a specification which is built on an Hamiltonian
functionalH, that is explicitely given in terms of b. As customary in Equilibrium Statistical
Models, this specification if defined as a perturbation of a reference specification, which in
this model consists of stochastic bridges derived from P .

[C ] Q minimizes the free energy Hb, difference of the specific entropy and the specific energy,
defined on Ps(Ω) by

Hb(Q′) = H(Q′)− EQ′

( ∫ 1

0
b(θ0,tω)dω0(t)

)
+

1
2
EQ′

(
b2(ω)− b(ω)ϕ′(ω0(0))

)
(1.2)
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Assertion [C] can be stated in the following way:

0 = Hb(Q) = inf
Q′∈Ps(Ω)

H(Q′)<+∞

[
H(Q′)− EQ′

( ∫ 1

0
b(θ0,tω)dω0(t)

)
+

1
2
EQ′

(
b2(ω)− b(ω)ϕ′(ω0(0))

)]
.

(1.3)
If we consider the specific energy, i.e. the second part of Hb, we see that it includes a stochastic
integral. Hamiltonians of this form appeared in Mathematical Physics in the context of diamag-
netic current [17].

Gibbs fields on IRZZd
have been considered by several authors from the variational principle

point of view (see e.g. Föllmer [8], Lebowitz and Presutti [16], Künsch [15]), the difficulty coming
from unboundedness of the spin space. On the other hand, Gibbs fields on the trajectory space
C(IR, IR) were introduced in the context of Euclidean quantum field theory as quasi-invariant
measures (see Courrège and Renouard [1], Royer and Yor [26] and references therein). The
variational approach of such Gibbs fields was first considered by Roelly and Zessin [24] for the
law of a Brownian diffusion with values in the torus. More recently Osada and Spohn [21]
used D-L-R approach for constructing a class of Gibbsian non Markovian real valued stochastic
processes. One of the difficulties in dealing with Gibbs fields on path spaces, comes from the
fact that disjoint time regions are not independent under the reference measure. In this paper,
following the notions introduced by Minlos, Roelly and Zessin in [19], we deal with Gibbs fields
on C(IR, IR)ZZ

d
, that is parametrized by space and time ZZd × IR, so that both difficulties above

have to be overcome. In particular, the dependence of a stochastic bridge on boundary conditions
becomes essential, and methods from stochastic analysis play a key role.

We finally make some comments on the usefulness of the results proved in this paper. First
of all we have not assumed Markovianity of the system, i.e. b(ω) = b(ω(0)). Moreover, even in
the Markovian case, not having assumed any smoothness on the drift b, it is not known whether
the s.d.e. (1.1) admits any (weak or strong) solution, or whether among the solutions there is
one that is time stationary. Our results suggest two approaches to the existence of stationary
solutions.

• Stationary solutions may be constructed as space-time Gibbs states, e.g. via cluster expan-
sion. Results concerning space-time cluster expansion for some models can be found e.g.
in [19] and [20]. Our results guarantee that states constructed in that way are indeed weak
stationary solutions of the s.d.e.. Indeed, we show in [5] that a stationary solution of (1.1)
can be constructed by cluster expansion, provided ‖b‖∞ is sufficiently small, but with no
Markovianity or regularity conditions.

• Stationary solutions may be obtained by exploiting the variational principle, i.e. by showing
that the free energy Hb attains the value 0. This is the case if Hb is the (good) rate function
for a Large Deviation Principle. This would require some refinements of the results in [3, 4]
concerning space-time large deviations.

The paper is organized in the following sections.

1. Introduction.

2. Gibbs specifications and space-time Gibbs states.

3. Infinite-dimensional diffusions are Gibbs states.
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4. Weak variational principle.

5. The minima of the free energy are diffusions.

6. The case of Markovian gradient systems.

2 Gibbs specifications and space-time Gibbs states

First of all we introduce our one dimensional reference process, which is the time-stationary
solution of the scalar differential equation

dx(t) = −1
2
ϕ′(x(t))dt+ dw(t) (2.1)

where w is a real valued Brownian motion and the self potential ϕ is a C2(IR, IR) function satisfying
the following properties :

lim
|x|→+∞

ϕ(x) = +∞, and ∃C0 ∈ IR such that ϕ̃ =: ϕ′′ − 1
2
(ϕ′)2 ≤ C0 (2.2)

e−ϕ ∈ L1(IR). (2.3)

Property (2.2) guarantees that, for any given initial condition, a unique non-exploding strong
solution of (2.1) exists (see Theorem 2.2.19 in [25]). Property (2.3) insures that the measure
e−ϕdx, which is invariant, is normalizable. We let W denote the law on C(IR, IR) of the stationary
solution of (2.1), and let µ(dx) = e−ϕ(x)dx/

∫
e−ϕ(y)dy denote the unique invariant Probability

measure associated to (2.1).

Let Ω = C(IR, IR)ZZ
d

be the canonical configuration space, and F be the canonical σ-field.
With P(Ω) we denote the space of probability measures on Ω, and Ps(Ω) is the subset of P(Ω)
containing the probabilities that are invariant for the space-time shift maps (θi,t)i∈ZZd, t∈IR.

In what follows we let P be the law of the reference non-interacting infinite system, i.e.

P = ⊗ZZdW ∈ Ps(Ω).

The main object of this paper is an infinite-dimensional diffusion that is obtained by perturb-
ing through an interaction a system of infinitely many independent particles each evolving with
dynamics given by (2.1): we fix a finite subset Λ0 ⊂ ZZd, and assume we are given a measurable
bounded Λ0-local function b(ω) = b(ωΛ0) on C((−∞, 0], IR)Λ0 , where this path space is provided
with the topology of uniform convergence on compact subsets of IR−, and the corresponding
Borel σ-field. We consider the associated stochastic differential system

dXi(t) =
(
− 1

2
ϕ′(Xi(t)) + b(θi,tX)

)
dt+ dBi(t) , i ∈ ZZd, t ∈ IR+. (2.4)

Remark that in time-stationary situation, we can also consider the above system for time t ∈ IR.
We need different filtrations on the space-time structure. Let V be the set of space-time volumes
V having the form V = Λ × I where Λ ⊂ ZZd finite, and I =]a1, a2[ is a bounded open interval.
For a space-volume Λ ⊂ ZZd we define its enlargement Λ+ by

Λ+ = {i ∈ ZZd : (Λ0 + i) ∩ Λ 6= ∅}.
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Letting Λ++ = (Λ+)+, we define the boundary

∂Λ = Λ++ \ Λ.

For a time-volume I =]a1, a2[⊂ IR we define its enlargement I+ by

I+ =]−∞, a2].

For V = Λ× I ∈ V the forward σ-field FV is defined by

FV = σ{ωi(t) : i ∈ Λ++, t ∈ I+},

the backward σ-field F̂V by
F̂V = σ{ωi(t) : (i, t) 6∈ V }

and the boundary σ-field ∂FV by
∂FV = FV ∩ F̂V .

We need now a reference specification, denoted by Π0. It is a kernel based on P , and deter-
mined by

Π0
V (A) = P (A|F̂V ) P − a.s. (2.5)

for all V ∈ V, and A ∈ FV . It is easy to see that, for V = Λ×]a1, a2[, Π0
V is given by

Π0
V (ω, dω′) = ⊗i∈∂Λδω(i)(dω

′
i) ⊗ ⊗i∈ΛW

a2,ωi(a2)
a1,ωi(a1) (dω′i) (2.6)

where W a2,y
a1,x is the law of the stochastic bridge obtained by conditioning W to be x at time a1

and y at time a2. That Π0 is a space-time specification in the Gibbsian sense has been proved
in [19], Example 2, Section 1.4.2.

We now introduce the interaction between the spins through a potential Φ = (ΦV )V ∈V which
is defined on a subset Ω′ ⊂ Ω as follows:

ΦΛ×I ≡ 0 if 6 ∃i ∈ ZZd : Λ = i+ Λ0

Φ(i+Λ0)×I(ω) = −
∫
I b(θi,tω)dωi(t) + 1

2

∫
I

[
b(θi,tω)(b(θi,tω)− ϕ′(ωi(t)))

]
dt otherwise

= −
∫
I b(θi,tω)dB̃i(t) + 1

2

∫
I b2(θi,tω)dt

(2.7)
where

B̃i(t) = ωi(t) +
1
2

∫ t

a1

ϕ′(ωi(s))ds, t ∈]a1, a2[.

Note that this potential is not defined a priori on the whole Ω, but only for ω ∈ Ω′ for which the
stochastic integral

∫
I b(θi,tω)dωi(t) makes sense.

Note also that B̃i(a1 + .)− B̃i(a1)’s are independent Brownian motions under P .
The associated Hamiltonian is defined for V = Λ× I by

HV (ω) =
∑

Λ′∩Λ6=∅
ΦΛ′×I(ω) = −

∑
i∈Λ+

[∫
I
b(θi,tω)dB̃i(t)−

1
2

∫
I
b2(θi,tω)dt

]
, ω ∈ Ω′. (2.8)

We observe that Φ and H are space-time translation invariant, and that HV is FV -measurable.
Moreover Φ has finite range equal to the diameter of Λ0.
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By means of Π0, the reference specification, and H, the space-time Hamiltonian defined in
(2.8), we define for V ∈ V, ω ∈ Ω the specification ΠH

V (ω, .) as the following probability measure
on Ω′

ΠH
V (ω, dω′) =

{
1

ZH
V (ω)

exp(−HV (ω′))Π0
V (ω, dω′) if 0 < ZH

V (ω) < +∞
0 otherwise,

where
ZH

V (ω) =
∫
Ω′

exp(−HV (ω′))Π0
V (ω, dω′)

is the (∂FV -measurable) normalization factor.

Remark 1 1. Note that Φ(i+Λ0)×I ∈ L2(P ), and therefore is finite P -almost surely. We make
the convention that it is always chosen in such a way that it does not assume the value
−∞.

2. The fundamental property

EP [exp(−HV )] = 1 ∀V ∈ V (2.9)

holds. It follows from the fact that, for each Λ ⊂ ZZd finite and a1 ∈ IR the process
(exp(−HΛ×]a1,a2[))a2>a1 is a P -martingale for the filtration (FΛ×]a1,a2[)a2>a1 .

3. The fact that ΠH is a specification comes from a general result of Preston [22].

Definition 1 A probability measure Q on Ω is said to be a space-time Gibbs state with specifi-
cation ΠH if there exists a subset Ω′ ⊂ Ω such that Q(Ω′) = 1, H is well defined on Ω′ and, for
all V ∈ V and A ∈ FV ∩ Ω′

Q(A|F̂V ) = ΠH
V (A) Q− a.s.

The set of space-time Gibbs states for ΠH will be denoted by either G(ΠH) or G(H,Π0).
Moreover we let Gs(ΠH) denote the set of space-time invariant Gibbs states, i.e.

Gs(ΠH) = G(ΠH) ∩ Ps(Ω).

3 Infinite-dimensional diffusions are Gibbs states

We recall that a weak solution of the s.d.e. (2.4) is a probability measure Q on Ω such that the
scalar processes (

Xi(·)−
∫ ·

0

(
− 1

2
ϕ′(Xi(s)) + b(θi,sX)

)
ds

)
i∈ZZd

are Q-independent Brownian motions, where X is the canonical process.

Proposition 1 Let Q ∈ Ps(Ω) be a weak solution of the s.d.e. (2.4). Then Q ∈ Gs(ΠH) where
the Hamiltonian H is defined in (2.8).

Proposition 1 is a direct consequence of the following two lemmas.
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Lemma 1 Let Q1, Q2 be two mutually absolutely continuous probability measures on a measur-
able space (Ω,F ′), and let F be a sub-σ-field of F ′. We denote by Q1

F (resp. Q2
F) the regular

version of Q1(· |F) (resp. Q2(· |F)). Then, Q1-a.s., Q1
F and Q2

F are mutually absolutely contin-
uous and, denoting M = dQ1/dQ2, we have

dQ1
F

dQ2
F

= MQ2
F (M−1).

Proof. Let f and g be respectively F ′-measurable and F-measurable bounded functions. By
definition of conditional expectation

Q2(fg) = Q2(gQ2
F (f)).

On the other hand
Q2(fg) = Q1(Mfg) = Q1(gQ1

F (Mf))

= Q2(M−1gQ1
F (Mf)) = Q2(gQ2

F (M−1)Q1
F (Mf))

and the conclusion follows.

Lemma 2 Let Q be a weak solution of (2.4) and let I =]a1, a2[. Define the σ-fields

GV = GΛ×I = σ{ωi(t) : (t ≤ a1, i ∈ ZZd) or (t ≤ a2, i 6∈ Λ)}

and
BV = σ{ωi(t) : (i, t) ∈ Λ× Ī}.

If QGV
and PGV

are the regular versions of Q(· |GV ) and P (· |GV ), then

dQGV

dPGV

|BV
=

1
CV (ω)

exp
(
−
∑

i∈Λ+

(
−
∫

I
b(θi,tω)dB̃i(t) +

1
2

∫
I
b2(θi,tω)dt

))
.

The normalization factor CΛ×I(ω) is measurable with respect to the σ-field

σ{ωi(t) : (t ≤ a1, i ∈ Λ++) or (t < a2, i ∈ ∂Λ)},

thus, in particular, CV (ω) is ∂FV -measurable.

Proof. Given the weak solution Q of (2.4), define the measure R on Ω by

dR

dQ
= exp

( ∑
i∈Λ+

(
−
∫

I
b(θi,tω)dB̃i(t) +

1
2

∫
I
b2(θi,tω)dt

))
.

By Girsanov Theorem it follows that R is a probability measure : it is the weak solution of a
similar equation to (2.4) but where the coordinates inside of Λ+ are simply independent diffusions
evolving like (2.1). Then RGV

|BV
= PGV

|BV
. The conclusion follows by applying Lemma 1.

Proof of Proposition 1. Observe that

F̂V = GV ∨ G′V

where GV is defined in Lemma 2, and

G′V = σ{ωi(a2) : i ∈ Λ}.

By combining Lemma 2 with Lemma 1 the conclusion follows.
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Remark 2 In the literature there are strong regularity conditions on a Markovian drift to ensure
existence (and uniqueness) of strong solutions to equation (2.4) (cf. e.g. [27], theorem 4.1). One
advantage of our Gibbsian approach to infinite-dimensional diffusions, is that Gibbs fields can be
constructed through perturbation methods (e.g. cluster expansion) without Markovianity and
such regularity conditions ([5]).

4 Weak variational principle

In this section we prove one direction of the space-time Gibbs variational principle, which is a
partial converse of Proposition 1.

To simplify the notations, we introduce

Bn := BVn = BΛn×]0,n[

where Λn = [0, n− 1]d ∩ ZZd. We consider also

B− = σ{ωi(t) : (t ≤ 0, i ∈ ZZd) or (0 < t ≤ 1 and i < 0)}.

Here ”<” denotes the lexicographic order in ZZd.
For µ, ν probability measures on some measurable space (E, E), we denote by h(µ|ν) their

relative entropy. Moreover hG(µ|ν) is the relative entropy between their restriction µ|G and ν|G
to a given sub-σ-field G of E . As before, we denote by µG the regular version of the conditional
probability of µ w.r.t. G.

We now give supplementary conditions on the self-potential ϕ, to ensure that the reference
process x(t) solution of (2.1) is sufficiently ergodic.
Assumption A. The self potential ϕ satisfies either one of the following conditions:

A1.
0 < lim inf

|x|→+∞
ϕ′′(x) ≤ lim sup

|x|→+∞
ϕ′′(x) < +∞ (4.1)

A2. Property (2.2) and

0 < lim inf
|x|→+∞

ϕ′′(x) and
∫ ∞ 1

ϕ′(x)
dx < +∞. (4.2)

The assumption lim inf |x|→+∞ ϕ′′(x) > 0 implies that the measure e−ϕ(x)dx has tails not
bigger than Gaussian. The remaining parts of either Assumption A1 or Assumption A2 imply
the following bounds on the transition density

qt(x, y) =
pt(x, y)

e−ϕ(x)/
∫
e−ϕ(y)dy

with respect to the invariant probability measure µ(dx) for the diffusion (2.1), where pt(x, y) is
the transition density from y to x with respect to the Lebesgue measure.

Lemma 3 a. Under Assumption A1 there is a constant A > 0 such that for all t ≥ 1 and
x, y ∈ IR,

e−A(x2+y2+1) ≤ qt(x, y) ≤ eA(x2+y2+1). (4.3)
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b. Under Assumption A2 the stronger uniform bounds

e−A ≤ qt(x, y) ≤ eA

hold for all t ≥ 1 and x, y ∈ IR.

The proof of Lemma 3 will be given in the appendix.

A typical example of a potential satisfying A1 is a quadratic potential smoothly perturbed on a
compact subset of IR ; a typical example of a potential satisfying A2 is

ϕ(x) = |x|s+2, for some s > 0.

For Q ∈ Ps(Ω) we define
H(Q) = Q(hB1(QB− |Wω0(0))) (4.4)

where Wx is the law of the solution of (2.1) with value x ∈ IR at time 0 (note that Wω0(0) =
PB− |B1). Furthermore, if ν is the law of X0(0) under Q ∈ Ps(Ω), then the condition H(Q) < +∞
implies that

Q|B1 �Wν

where Wν(dω) = Wx(dω) ⊗ ν(dx) is the law of the solution of (2.1) with initial distribution
ν. This fact guarantees that every coordinate is a semimartingale under Q, and then that the
stochastic integral under Q makes sense :

Hb(Q) =

{
H(Q)− EQ

( ∫ 1
0 b(θ0,tω)dω0(t)

)
+ 1

2EQ

(
b2(ω)− b(ω)ϕ′(ω0(0))

)
if H(Q) < +∞

+∞ otherwise .
(4.5)

We now prepare the proof of the variational principle. Let Q ∈ Gs(ΠH) satisfy H(Q) < +∞.
Instead of ΠH we also consider the specification ΠH̃ , built on Π0 and the following modified
Hamiltonian

H̃V (ω) = −
∑
i∈Λ

(∫ a2−1

a1+1
b(θi,tω)dωi(t)−

1
2

∫ a2−1

a1+1

(
b(θi,tω)(b(θi,tω)− ϕ′(ωi(t)))

)
dt

)
(4.6)

for V ∈ V, V = Λ×]a1, a2[ with a1 ≤ a2 − 2. We let ZH̃
V (ξ) denote the corresponding normaliza-

tion
ZH̃

V (ξ) =
∫
Ω

exp(−H̃V (ω))Π0(ξ, dω). (4.7)

We also introduce the following sequence of probability measures on (Ω,F), defined for n ≥ 2,

ΠH̃
n,Q(dωVn , dξV c

n
) = ΠH̃

Vn
(ξ, dω)Q(dξ). (4.8)

The reason for using the modified Hamiltonian H̃V is that it is simpler to get estimates for ZH̃
V

than for ZH
V . Indeed, in computing ZH̃

V one needs only the restriction of Π0
V to the time interval

[a1 + 1, a2 − 1], and this restriction is very regular with respect to P .
In a first step we prove
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Proposition 2 If Q ∈ Ps(Ω) is such that H(Q) < +∞, then

lim
n→∞

1
|Vn|

hBn(Q|ΠH̃
n,Q) = Hb(Q) (4.9)

where |Vn| = nd+1 is the volume of the space-time region Vn.

As a second step we show

Proposition 3 If Q ∈ Gs(ΠH) is such that H(Q) < +∞, then

lim
n→∞

1
|Vn|

hBn(Q|ΠH̃
n,Q) = 0. (4.10)

Thus we obtain, as the main result of this section, one direction of the Gibbs variational
principle.

Theorem 1 If Q ∈ Gs(ΠH) is such that H(Q) < +∞, then Hb(Q) = 0.

Remark 3 We make here some considerations of the finite entropy condition H(Q) < +∞.

1. First of all, it implies that under Q the canonical process is a semi-martingale, and then,
the Hamiltonian H is well defined Q-a.s. without any difficulty.

2. Föllmer et al. introduced in [10], Definition 2.1, a locally finite entropy condition which can
be stated as follows. Let B̂− denote the σ-field

B̂− = σ{ωi(t) : (t ≤ 0; i ∈ ZZd) or (0 < t ≤ 1 and i 6= 0)}.

Q satisfies the locally finite entropy condition if

Ĥ(Q) := Q[hB1(QB̂− |Wω0(0))] < +∞.

Since B− ⊂ B̂−, Jensen’s inequality yields

Ĥ(Q) ≤ H(Q).

Therefore our finite entropy condition implies the locally finite entropy condition of Föllmer.

3. Suppose that the drift b is Markovian (b(ω) = b(ω(0))) and of gradient type, i.e. there is
a local C2-function ψ such that the drift b is given by

b(x) =
∂

∂x0

∑
i∈ZZd

ψ(θix) (4.11)

where θixj = xi+j is the space shift on IRZZd
(as customary, the sum in (4.11) is formal, but

its derivative is well defined). For this class of systems, that will be referred to as gradient
systems, the condition H(Q) < +∞ holds true for all Q ∈ Gs(ΠH). This and other aspects
of gradient systems will be the subject of Section 6.

Before giving the proof of Proposition 2, let us recall an important inequality satisfied by the
relative entropy, which will be used at several places in the proof.
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Lemma 4 For every pair of probability measures (µ, ν) on a measurable space (E, E), and for
every measurable function f such that f− ∈ L1(ν),

log
∫

E
efdµ ≥

∫
E
fdν − hE(ν|µ). (4.12)

Proof. When f is bounded above, this is the usual entropy inequality. To obtain it for f− ∈ L1(ν),
it is enough to construct bounded approximations and the inequality remains true for the limit.

In the proof of Proposition 2 we need two technical facts. The first is the representation of
the functional H(Q) given by

H(Q) = lim
n→∞

1
|Vn|

hBn(Q|P ). (4.13)

which holds for Q ∈ Ps(Ω) such that H(Q) < +∞. This is a version of McMillan Theorem. It
can be proved as in Dai Pra [4], Proposition 4.1, and goes back to the work of Robinson and
Ruelle [23]. The second technical fact we need is stated and proved in the following simple but
key Lemma.

Lemma 5 Under Assumption A, if Q ∈ Ps(Ω) is such that H(Q) < +∞, then

lim
n→+∞

1
|Vn|

hBΛn×{0,n}(Q|P ) = 0.

Proof. We first note that

log
dQ

dP

∣∣∣
BΛn×{0,n}

= log
dQBΛn×{0}

dPBΛn×{0}

∣∣∣
BΛn×{n}

+ log
dQ

dP

∣∣∣
BΛn×{0}

= log
dQBΛn×{0}

dP

∣∣∣
BΛn×{n}

+ log
dP

dPBΛn×{0}

∣∣∣
BΛn×{n}

+ log
dQ

dP

∣∣∣
BΛn×{0}

. (4.14)

Using the time stationarity of Q and Lemma 4 applied to µ = Q
∣∣∣
BΛn×{0}

, ν = Q
∣∣∣
BΛn×{n}

and

f = log
dQBΛn×{0}

dP

∣∣∣
BΛn×{n}

we have

EQ

[
log

dQBΛn×{0}

dP

∣∣∣
BΛn×{n}

]
≤ EQ

[
log

dQ

dP

∣∣∣
BΛn×{0}

]
= hBΛn×{0}

(Q|P ). (4.15)

Moreover ∣∣∣∣∣log
dP

dPBΛn×{0}

∣∣∣
BΛn×{n}

(ω)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i∈Λn

log qn(ωi(n), ωi(0))

∣∣∣∣∣∣
where qt(x, y) has been defined in Lemma 3.

Now, under Assumption A2, | log qn| is uniformly bounded so that, easily

lim
n→+∞

1
|Vn|

EQ

[
log

dP

dPBΛn×{0}

∣∣∣
BΛn×{n}

]
= 0. (4.16)
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On the other hand, under Assumption A1, thanks to Lemma 3, there is a positive constant A,
independent on n, such that

| log qn(x, y)| ≤ A(1 + x2 + y2). (4.17)

Thus, by space-time shift invariance of Q∣∣∣∣∣EQ

[
log

dP

dPBΛn×{0}

∣∣∣
BΛn×{n}

]∣∣∣∣∣ ≤ nd
(
2EQ[ω2

0(0)] + 1
)
.

Thus (4.16) is established under Assumption A1 if we show that EQ[ω2
0(0)] < +∞. To see this

we use Lemma 4. For every ε > 0

EQ[ω2
0(0)] ≤ ε−1

[
logEP

(
eεω

2
0(0)
)

+ hB{0}×{0}(Q|P )
]

(4.18)

that is finite for ε sufficiently small, since P |B{0}×{0} has Gaussian tails. Thus (4.16) is established
under Assumption A1 too.

By (4.14), (4.15) and (4.16) we get

hBΛn×{0,n}(Q|P ) ≤ 2hBΛn×{0}
(Q|P ) + o(|Vn|). (4.19)

The fact that
hBΛn×{0}

(Q|P ) = o(|Vn|) (4.20)

is almost obvious. For instance, one can take in (4.13) the space-time volume Vn = Λn × [0,
√
n]

and obtain
H(Q) = lim

n→∞
1

nd+ 1
2

hBΛn×[0,
√

n]
(Q|P )

which yields
hBΛn×{0}

(Q|P ) ≤ hBΛn×[0,
√

n]
(Q|P ) = o(nd+1).

By (4.19) and (4.20) the conclusion follows.

Proof of Proposition 2.
Taking into account the definition of Hb and (4.13), all we have to show is

lim
n→∞

1
|Vn|

EQ

log
dΠH̃

n,Q

dP

∣∣∣
Bn

 = EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)−

1
2

∫ 1

0
b2(θ0,tω)dt

)
. (4.21)

Note that

log
dΠH̃

n,Q

dP

∣∣∣
Bn

= log
dΠH̃

Vn
(ωV c

n
, ·)

dΠ0
Vn

(ωV c
n
, ·)

∣∣∣
Bn

+ log
dQ

dP
|BΛn×{0,n} .

By Lemma 5, (4.21) is established if we can show that

lim
n→+∞

1
|Vn|

EQ

log
dΠH̃

Vn
(ωV c

n
, ·)

dΠ0
Vn

(ωV c
n
, ·)

∣∣∣
Bn

 = EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)−

1
2

∫ 1

0
b2(θ0,tω)dt

)
. (4.22)

To see this, observe that

EQ

log
dΠH̃

Vn
(ωV c

n
, ·)

dΠ0
Vn

(ωV c
n
, ·)

∣∣∣
Bn

 = −EQ

[
logZH̃

Vn
(ωV c

n
)
]
− EQ(H̃Vn(ω)). (4.23)
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Identity (4.22) now follows if we show that

− lim
n→+∞

1
|Vn|

EQ(H̃Vn(ω)) = EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)−

1
2

∫ 1

0
b2(θ0,tω)dt

)
(4.24)

and
lim

n→+∞

1
|Vn|

EQ

[
logZH̃

Vn
(ωV c

n
)
]

= 0. (4.25)

Equality (4.24) follows readily by shift invariance of Q and the definition of H̃Vn , provided∫ 1

0
b(θ0,tω)dB̃0(t) ∈ L1(Q). (4.26)

To prove (4.26) we argue as follows. Due to the finite entropy condition, the canonical process
under Q has a semi-martingale decomposition as follows: there exists a Q-square integrable
random variable β, measurable w.r.t. σ{ω(t) : t ≤ 0}, such that

(
Mi(t) := B̃i(t)−

∫ t

0
β(θi,sω)ds

)
i∈ZZd

(4.27)

are Q-independent Brownian motions. This fact can be proved by using Theorem 2.4 in [10]
or [2] p.166, specialized to the translation invariant case. Indeed (see Remark 3), our entropy
condition is stronger than the local entropy conditions appearing in [10].

Therefore ∫ 1

0
b(θ0,tω)dB̃0(t) =

∫ 1

0
b(θ0,tω)β(θ0,tω)dt+

∫ 1

0
b(θ0,tω)dM0(t)

that easily implies (4.26) and thus (4.24).
We are left to show (4.25). First observe that (4.12)

logZH̃
Vn

(ωV c
n
) = log

∫
e−H̃VndΠ0

Vn
(ωV c

n
, ·) = log

∫
e−H̃Vn

(
dΠ0

Vn
(ωV c

n
, ·)

dP

∣∣∣
BΛn×[1,n−1]

)
dP
∣∣∣
BΛn×[1,n−1]

.

(4.28)
Moreover

dΠ0
Vn

(ωV c
n
, ·)

dP

∣∣∣
BΛn×[1,n−1]

(ωVn) =
∏

i∈Λn

q1(ωi(1), ωi(0))q1(ωi(n), ωi(n− 1))
qn(ωi(n), ωi(0))

. (4.29)

Under Assumption A2, each term of the r.h.s. of (4.29) is uniformly bounded, that immediately
implies (4.25) after having observed that, by Girsanov formula,∫

e−H̃VndP = 1.

Under Assumption A1, we use the bound (4.17) on the transition density qt(x, y), and we get

dΠ0
Vn

(ωV c
n
, ·)

dP

∣∣∣
BΛn×[1,n−1]

≥ exp

−A′ ∑
i∈Λn

(
ω2

i (0) + ω2
i (1) + ω2

i (n− 1) + ω2
i (n) + 1

) .

13



Thus, letting dQ
ωV c

n
n = e−H̃Vn (ωV c

n
·)dP |BΛn×[1,n−1]

, by Jensen’s inequality

logZH̃
Vn

(ωV c
n
) ≥ log

∫
exp

−A′ ∑
i∈Λn

(
ω2

i (0) + ω2
i (1) + ω2

i (n− 1) + ω2
i (n) + 1

) dQωV c
n

n

≥ −A′
∑
i∈Λn

{
E

Q
ωV c

n
n

[ω2
i (1) + ω2

i (n− 1)] + 1 + ω2
i (0) + ω2

i (n)
}
. (4.30)

Thus, the inequality

lim inf
n

1
|Vn|

EQ[logZH̃
Vn

(ωV c
n
)] ≥ 0

follows if we show that
sup

n
sup
i∈Λn

sup
ωV c

n

E
Q

ωV c
n

n

[ω2
i (n− 1)] < +∞. (4.31)

To see (4.31), observe that, under Q
ωV c

n
n , the canonical process satisfies the s.d.e., for t ∈ [1, n−1]

dωi(t) = [−cωi(t) + b(θi,tω)]dt+ dNi(t)

where (ωi(1))i∈Λn are i.i.d. and distributed according to the invariant measure of (2.1), and
(Ni)i∈Λn are independent Brownian motions under Q

ωV c
n

n . Boundedness of b(·) and an elementary
application of Ito’s rule yield (4.31).

We are now left to show

lim sup
n

1
|Vn|

EQ[logZH̃
Vn

(ωV c
n
)] ≤ 0 (4.32)

under Assumption A1. We first claim that(
logZH̃

Vn

)−
∈ L1(Q). (4.33)

This follows easily from (4.30), (4.31) and the fact that, as shown above, EQ(ω2
0(0)) < +∞ for

Q satisfying H(Q) < +∞. By (4.33), we are allowed to use Lemma 4 and obtain

EQ[logZH̃
Vn

] ≤ logEP (ZH̃
Vn

) + hBΛn×{0,n}(Q|P ).

Using this inequality together with Lemma 5 and the fact that EP (ZH̃
Vn

) = 1, (4.32) follows.

Proof of Proposition 3. Let Q ∈ Gs(ΠH) satisfy H(Q) < +∞. The following argument goes back
to Preston [22], Lemma 7.7. First note the identity

dQ

dΠH̃
n,Q

∣∣∣
Bn

(ωVn , ξV c
n
) =

ΠH
Vn

(ξ, dω)

ΠH̃
Vn

(ξ, dω)

∣∣∣
Bn

. (4.34)

This follows from definition of ΠH̃
n,Q and the Gibbs property of Q. Therefore

log
dQ

dΠH̃
n,Q

∣∣∣
Bn

(ωVn , ξV c
n
) =

14



=
∑

i∈Λ+
n

( ∫ n

0
b(θi,tω)dB̃i(t)−

1
2

∫ n

0
b2(θi,tω)dt

)
−
∑
i∈Λn

( ∫ n−1

1
b(θi,tω)dB̃i(t)−

1
2

∫ n−1

1
b2(θi,tω)dt

)
(4.35)

− logZH
Vn

(ξV c
n
) + logZH̃

Vn
(ξV c

n
).

We now discuss separately the behavior of each term in (4.35). As in Proposition 2

lim
n→∞

1
|Vn|

EQ[logZH̃
Vn

(ξV c
n
)] = 0 (4.36)

We observe also that the semimartingale argument used in Proposition 2 to prove (4.26), applies
here as well to show that the integral with respect to Q of the difference of the first two terms in
(4.35) multiplied by 1/|Vn| goes to zero. The proof is therefore completed if we can show that

lim inf
n→∞

1
|Vn|

EQ(logZH
Vn

(ξV c
n
)) ≥ 0. (4.37)

Using (4.12) we obtain

logZH
Vn

(ξV c
n
) = log

∫
Π0

Vn
(ξ, dω)e−HVn (ω)

≥ −
∫

ΠH̃
Vn

(ξ, dω)HVn(ω)−
∫

ΠH̃
Vn

(ξ, dω) log
ΠH̃

Vn
(ξ, dω)

Π0
Vn

(ξ, dω)

=
∫

ΠH̃
Vn

(ξ, dω)
[ ∑

i∈Λ+
n

( ∫ n

0
b(θi,tω)dB̃i(t)−

1
2

∫ n

0
b2(θi,tω)dt

)

−
∑
i∈Λn

( ∫ n−1

1
b(θi,tω)dB̃i(t)−

1
2

∫ n−1

1
b2(θi,tω)dt

)]
+ logZH̃

Vn
(ξV c

n
)

=
∫

ΠH̃
Vn

(ξ, dω)
[ ∑

i∈Λ+
n \Λn

( ∫ n

0
b(θi,tω)dB̃i(t)−

1
2

∫ n

0
b2(θi,tω)dt

)

+
∑
i∈Λn

( ∫
[0,1]∪[n−1,n]

b(θi,tω)dB̃i(t)−
1
2

∫
[0,1]∪[n−1,n]

b2(θi,tω)dt
)]

+ logZH̃
Vn

(ξV c
n
).

The proof is complete if we can find a constant C > 0 such that, for i ∈ Λ+
n \ Λn

|
∫
Q(dξ)ΠH̃

Vn
(ξ, dω)

∫ n

0
b(θi,tω)dB̃i(t)| ≤ Cn (4.38)

and, for i ∈ Λn,∣∣∣ ∫ Q(dξ)ΠH̃
Vn

(ξ, dω)
[ ∫

[0,1]
b(θi,tω)dB̃i(t) +

∫
[n−1,n]

b(θi,tω)dB̃i(t)
]∣∣∣ ≤ C. (4.39)

The proof of (4.38) follows easily after having observed that B̃i(t)−
∫ t
0 β(θs,iξ)ds is a Brownian

motion under Q, with β as in Proposition 2.
The proof of (4.39) is slightly harder, since we have to find a semimartingale representation

of B̃i(t) under ΠH̃
Vn

. Consider first the part of (4.39) with integral on the time interval [0, 1]. By
definition of ΠH̃

Vn
, in [0, 1] the law of B̃i(t) under ΠH̃

Vn
coincides with the law of the solution of
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(2.1) conditioned to hold ξi(0) at time 0 and ξi(n) at time n. It is well known [12] that the drift
of such process is given by

−1
2
ϕ′(x) +

d

dx
log pn−t(ξi(n), x),

where, as above, pt(·, ·) is the transition density of the solution of (2.1). Thus, defining

λn,ξ(t, x) =
d

dx
log pn−t(ξi(n), x),

the process

B̃i(t)−
∫ t

0
λn,ξ(s, ωi(s))ds,

for 0 ≤ t ≤ 1 is a Brownian motion under ΠH̃
Vn

. Therefore

|
∫

ΠH̃
Vn

(ξ, dω)
∫
[0,1]∪[n−1,n]

b(θi,tω)dB̃i(t)| (4.40)

= |
∫

ΠH̃
Vn

(ξ, dω)
∫
[0,1]∪[n−1,n]

b(θi,tω)λn,ξ(t, ωi(t))dt|

≤
√

2‖b‖∞
[ ∫

ΠH̃
Vn

(ξ, dω)
∫
[0,1]∪[n−1,n]

λ2
n,ξ(t, ωi(t))dt

]1/2
.

Now note that, by Girsanov Theorem, the quantity

1
2

∫
ΠH̃

Vn
(ξ, dω)

∫ 1

0
λ2

n,ξ(t, ωi(t))dt

equals the relative entropy of the restriction to the time interval [0, 1] of the Stochastic Bridge
W

n,ξi(n)
0,ξi(0) and the measure W0,ξi(0). By using elementary properties of the relative entropy, the

relative entropy above is equal to the relative entropy between the projections at time 1 of
W

n,ξi(n)
0,ξi(0) and W0,ξi(0), that are given respectively by

p1(x, ξi(0))pn−1(ξi(n), x)
pn(ξi(n), ξi(0))

dx =
q1(x, ξi(0))qn−1(ξi(n), x)

qn(ξi(n), ξi(0))
µ(dx) (4.41)

and
p1(x, ξi(0))dx = q1(x, ξi(0))µ(dx). (4.42)

By using the same arguments in the proof of Proposition 2, based on the bounds for qt(x, y),
(4.39) follows easily.

5 The minima of the free energy are diffusions

This section is devoted to the proof of the following result.

Theorem 2 Let Q ∈ Ps(Ω) be such that Hb(Q) = 0. Then Q is a weak solution of the s.d.e.
(2.4).
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We begin with some technical lemmas. In what follows we let

Gn = σ{ωi(t) : (t ≤ 0) or (t ≤ 1, i ∈ Λn)}

Gn = σ{ωi(t) : (t ≤ 0) or (t ≤ 1, i 6∈ Λn)}
G− = σ{ωi(t) : t ≤ 0, i ∈ ZZd}.

Lemma 6 Suppose H(Q) <∞. Then

H(Q) = lim
n→∞

1
nd
EQ{hGn(QG− |PG−)}.

The proof of Lemma 6 is standard, and is essentially equal to the proof of (4.13). From
Lemma 6, by the same argument as in Lemma 5.5 of [4], we get the following result.

Lemma 7 Suppose Hb(Q) = 0. Then

H(Q) = lim
n→∞

1
nd
EQ

(
hGn(QGn |PGn)

)
.

Lemma 8 Suppose Hb(Q) = 0, and let β be the G−-measurable random variable such that, for
all i ∈ ZZd

Mt(i) = B̃i(t)−
∫ t

0
β(θi,sω)ds (5.1)

are independent Brownian motions under Q (see (4.27)). Then

H(Q) ≥ 1
2
EQ(β2). (5.2)

Proof. We sketch the proof of (5.2), although it is analogous to Lemma 5.7 in [4].
Define

zn
t = exp

∑
i∈Λn

(∫ t

0
β(θi,sω)dB̃s(i)−

1
2

∫ t

0
β2(θi,sω)ds

) .
By Girsanov Theorem, zn

t is a PG−-local martingale. So let τk be an increasing sequence of
stopping times, τk → 1, such that for all k the process zn

t∧τk
is a martingale. We can therefore

define the random probability measure Pn,k
ω by

dPn,k
ω = zn

1∧τk
dPG− .

Since PG− = PGn on Gn we have

EQ{hGn(QGn |PGn)} = EQ{hGn(QGn |Pn,k
ω )}+ EQ{log zn

1∧τk
}

≥ EQ{log zn
1∧τk

} =
1
2

∑
i∈Λn

EQ

∫ τk

0
β2(θi,sω)ds

and the conclusion follows by letting k →∞ and using the Monotone Convergence Theorem.

Proof of Theorem 2. Using (5.1), it is enough to show that β(ω) = b(ω) Q-a.s.. Note that

EQ{
∫ 1

0
b(θ0,tω)dB̃0(t)−

1
2
b2(ω)} = EQ{β(ω)b(ω)− 1

2
b2(ω)}.

Thus, by (5.2)

0 = Hb(Q) ≥ 1
2
EQ{(β(ω)− b(ω))2},

and the conclusion follows.
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6 The case of Markovian gradient systems

Some of the results in the previous sections can be strengthen in the case of gradient systems.
We recall that a system on IRZZd

is said to be gradient if b(ω) = b(ω(0)), where

b(x) =
∂

∂x0

∑
j∈ZZd

ψ(θjx)

for a local C2 function ψ. We also assume that the first and second derivatives of ψ are bounded.
It is not restrictive to assume ψ(x) = ψ(xL), where L is a symmetric finite subset of ZZd

around the origin. Thus b is Λ0-local where we can choose Λ0 = {i ∈ ZZd : (i+L) ∩ L 6= ∅}, that
is also symmetric around the origin. By symmetry, it follows that {0}+ = Λ0.

Lemma 9 If the system is gradient then H(Q) < +∞ for every Q ∈ Gs(ΠH).

Proof. Consider the Hamiltonian

H{0}×]0,2[(ω) = −
∑
i∈Λ0

[ ∫ 2

0
b(θi,tω)dB̃i(t)−

1
2

∫ 2

0
b2(θi,tω)dt

]
.

Following a decoupling technique used in [6], for i ∈ Λ0 we define

b̃i(x) =
∂

∂xi

∑
j∈ZZd

ψ(θjx).

We claim that, for all i ∈ Λ0, the difference b̃i(x) − b(θi(x)) is independent of x0. To see this,
noting that if j 6∈ L then ψ(θjx) does not depend on x0, it is enough to show that

∂

∂x0

( ∂

∂xi

∑
j∈ZZd

ψ(θjx) − b(θix)
)

= 0 (6.1)

for every i ∈ Λ0. Indeed
∂

∂x0

( ∂

∂xi

∑
j∈ZZd

ψ(θjx) − b(θix)
)

=

=
∂

∂x0

∑
j∈ZZd

(
∂ψ

∂xi−j

)
(θjx)−

∂

∂x0

∑
j∈ZZd

(
∂ψ

∂x−j

)
(θi+jx) =

=
∑

j∈ZZd

(
∂2ψ

∂x−j∂xi−j

)
(θjx)−

∑
j∈ZZd

(
∂2ψ

∂x−i−j∂x−j

)
(θi+jx) ≡ 0.

Having established (6.1), we have two equivalent forms for the local specification ΠH
{0}×]0,2[:

ΠH
{0}×]0,2[(ω, dω

′) =
1

ZH
{0}×]0,2[(ω)

exp[−H{0}×]0,2[(ω
′)]Π0

{0}×]0,2[(ω, dω
′) =

1
Z̃H
{0}×]0,2[(ω)

exp
{ ∑

i∈Λ0

[ ∫ 2

0
b̃i(ω′(t))(dω′i(t)+

1
2
ϕ′(ω′i(t))dt)−

1
2

∫ 2

0
b2(ω′i(t))dt

]}
Π0
{0}×]0,2[(ω, dω

′).

(6.2)
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Letting k(x) =
∑

j∈ZZd ψ(θjx), we note that k(x) = k(xΛ0) and b̃i = ∂
∂xi
k(x) for i ∈ Λ0. Therefore,

by Ito’s rule,∑
i∈Λ0

∫ 2

0
b̃i(ω′)(dω′i(t) +

1
2
ϕ′(ω′i(t))dt) = k(ω′(2))− k(ω′(0))− 1

2

∑
i∈Λ0

∫ 2

0

∂2

∂x2
i

k(ω′(t))dt. (6.3)

Identities (6.2), (6.3) and the uniform boudedness of ψ imply that∣∣∣ log
ΠH
{0}×]0,2[(ω, dω

′)

Π0
{0}×]0,2[(ω, dω

′)

∣∣∣ ≤ C0 (6.4)

for some constant C0 > 0 independent of both ω and ω′.
Consider now Q ∈ Gs(ΠH). Recalling that B− ⊂ F̂{0}×]0,2[, we have∣∣∣ log

dQB−

dWω0(0)

∣∣∣
B1

(ω)
∣∣∣ ≤

≤
∣∣∣ log

dQF̂{0}×]0,2[

dW
2,ω0(2)
0,ω0(0)

∣∣∣
B1

(ω)
∣∣∣+ ∣∣∣ log

dW
2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣
B1

(ω)
∣∣∣

≤
∣∣∣ log

dΠH
{0}×]0,2[

dΠ0
{0}×]0,2[

(ω)
∣∣∣+ ∣∣∣ log

dW
2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣
B1

(ω)
∣∣∣. (6.5)

By (6.4), the first summand in (6.5) is uniformly bounded. Under Assumption A2, also the
second summand in (6.5) is uniformly bounded, so that clearly

H(Q) = EQ(hB1(QB− |Wω0(0))) = EQ(log
dQB−

dWω0(0)

∣∣∣
B1

)

is finite.
Under Assumption A1, it is enough to show that

EQ

∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣
B1

∣∣∣
 < +∞.

But, by the estimate (4.17), we have

∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣
B1

∣∣∣ ≤ A′(ω2
0(0) + ω2

0(1) + ω2
0(2) + 1). (6.6)

The fact that the r.h.s. of (6.6) is in L1(Q) is shown in (4.18).

With the given potential ψ we can define, for Λ ⊂ ZZd finite, the Hamiltonian

hΛ(x) = −2
∑

i:(i+Λ0)∩Λ6=∅
ψ(θix) (h{0}(x) = −2k(x))

and the local specifications on IRZZd

Πh
Λ(x, dx′) =

1
Zh

Λ(x)
exp[−hΛ(x′)]⊗i∈Λ λ(dxi)⊗⊗i6∈Λδxi(dx

′
i) (6.7)

where λ(dx) = e−ϕ(x)dx . We let G(Πh) denote the set of Gibbs measures for the specifications
in (6.7), and Gs(Πh) the subset of those that are invariant for the space-shifts (θi)i∈ZZd .
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Proposition 4 For Q ∈ Ps(Ω), we let Q0 denote its one-time marginal, i.e.

Q0(E) = Q({ω : ω(0) ∈ E}),

where E is a Borel subset of IRZZd
.

Then the map Q→ Q0 is a bijection between Gs(ΠH) and Gs(Πh).

Proof. Let S be the set of stationary weak solutions of equation (2.4). It is shown in [9], Theorem
3.10, that the stationary measures for (2.4) that are also invariant for the space shifts (θi)i∈ZZd

are exactly the elements of Gs(Πh). This can be rephrased by saying that the map Q→ Q0 is a
bijection between S ∩ Ps(Ω) and Gs(Πh). On the other hand, by Proposition 1, Theorems 1, 2
and Lemma 9 we have that S ∩ Ps(Ω) = Gs(ΠH).

In particular, if the potential ψ is bounded with an L∞-norm small enough, together with the
norm of its first and second derivatives, then the Gibbs measures are small perturbations of a free
field, and by [18] Theorem 1 page 105, Gs(Πh) contains exactly one element (which furthermore
admits a cluster expansion). So Gs(ΠH) is also reduced to a unique space-time Gibbs measure.
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7 Appendix. Proof of Lemma 3

We begin by proving part a. of Lemma 3. We first associate to the potential ϕ(x) the function

ϕ̃(x) = ϕ′′(x)− 1
2
ϕ′(x)2.

An elementary integration argument shows that, under Assumption A1 there are constants
A1, A2 > 0 and B1, B2 ∈ IR such that, for all x ∈ IR,

−A1x
2 +B1 ≤ ϕ̃(x) ≤ −A2x

2 +B2. (7.1)

Note that, if we consider the quadratic potential ϕ∗(x) = 1
2ax

2, a > 0, we obtain

ϕ̃∗(x) = a− 1
2
a2x2. (7.2)

Thus, by (7.1) and (7.2), we get that there are quadratic potentials ϕ−(x) = 1
2a

−x2, ϕ+(x) =
1
2a

+x2 and a constant C > 0 such that

∀x ∈ IR, ϕ̃−(x)− C ≤ ϕ̃(x) ≤ ϕ̃+(x) + C. (7.3)

Upper bounds for qt(x, y). The key idea for obtaining the desired bounds on qt(x, y) is to use the
following representation (see [28], Theorem 7.5.13):

qt(x, y) = e
1
2
ϕ(x)+ 1

2
ϕ(y)γt(x− y)Et,x

0,y

[
exp

(∫ t

0

1
4
ϕ̃(ωs)ds

)] ∫
e−ϕ(z)dz, (7.4)
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where
γt(ξ) =

1√
2πt

e−
ξ2

2t ,

and Et,x
0,y is the expectation with respect to the Brownian Bridge with endpoints (0, y) and (t, x).

By the upper bound in (7.3) and (7.4) we obtain

qt(x, y) ≤ Ke
1
2
ϕ(x)− 1

2
ϕ+(x)e

1
2
ϕ(y)− 1

2
ϕ+(y)eCtq+t (x, y), (7.5)

where K is a positive constant and

q+t (x, y) =
1√

1− e−a+t
exp

[
− 1

2σ2
t

[m2
tx

2 +m2
t y

2 − 2mtxy]
]
,

with
mt = e−

a+

2
t, σ2

t =
1
a+

(
1− e−a+t

)
,

is the transition density associated with the quadratic potential ϕ+. It is easily seen that

q+t (x, y) ≤ 1√
1− e−a+t

exp
[
mt

σ2
t

xy

]
≤ 1√

1− e−a+t
exp

[
mt

2σ2
t

(x2 + y2)
]
.

Since mt → 0 as t→ +∞, there is a T > 0 such that

e−
1
2
ϕ+(x) exp

[
mT

2σ2
T

x2

]
≤ e−

1
4
ϕ+(x).

Plugging this in (7.5), we obtain

qT (x, y) ≤Meg(x)eg(y) (7.6)

for a suitable M > 0 and
g(x) =

1
2
ϕ(x)− 1

4
ϕ+(x). (7.7)

In what follows we denote by µ the probability measure e−ϕ(x)∫
e−ϕ(y)dy

dx. By abuse of notation, we

let

µ(x) =
e−ϕ(x)∫
e−ϕ(y)dy

.

By Assumption A1, µ has Gaussian tails. It follows ([28], Corollary 7.5.38) that the semigroup

Ttf(x) =
∫
f(ξ)pt(ξ, x)dξ

is contractive in L2(µ), i.e. there is α > 0 (the spectral Gap) such that for all f ∈ L2(µ)

‖Ttf −
∫
fdµ‖L2(µ) ≤ e−αt‖f −

∫
fdµ‖L2(µ).

As a consequence, for f ∈ L2(µ)∣∣∣∣EW (f(xt)f(x0))− (
∫
fdµ)2

∣∣∣∣ ≤ e−2αt‖f‖2
L2(µ). (7.8)
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Now, using the fact that, for g defined in (7.7), eg ∈ L2(µ), for t > 3T we have

qt(x, y) =
∫
qT (x, z)pt−2T (z, w)qT (w, y)µ(w)dzdw

≤ M2eg(x)+g(y)
∫
eg(z)eg(w)pt−2T (z, w)dzdw

≤ M2eg(x)+g(y)‖eg‖2
L2(µ)(1 + e−2αT ).

Since the last bound is uniform for t > 2T and g(x) has at most quadratic growth, the upper
bound in (4.3) follows easily.
Lower bounds for qt(x, y). We proceed as in the upper bound. By (7.5) it is easily seen that for
a given T > 0 there exist M,a > 0 such that

qT (x, y) ≥Me−a(x2+y2).

We now proceed as in the upper bound, with g(x) = −ax2.

We now prove part b. of Lemma 3 and work under Assumption A2. Define

qt ∗ qs(w, z) =
∫
qt(w, y)qs(y, z)µ(y)dy.

Then, for any a ∈ [0, t
2 ]

sup
w,z∈IR

|qt(w, z)− 1| = sup
w,z∈IR

|qa ∗ (qt−2a − 1) ∗ qa(w, z)|

≤ sup
z∈IR

∫
sup
w∈IR

qa ∗ |qt−2a − 1|(w, y)qa(y, z)µ(y)dy.

By Theorem 1.4 in [14] the semigroup Tt, under Assumption A2, is ultracontractive, i.e. it maps
L2(µ) into L∞(µ); so there exists C1(a) > 0 such that

sup
w∈IR

qa ∗ |qt−2a − 1|(w, y) ≤ C1(a)‖(qt−2a − 1)(·, y)‖L2(µ).

So

sup
w,z∈IR

|qt(w, z)− 1| ≤ C1(a) sup
z∈IR

∫
qa(y, z)‖(qt−2a − 1)(·, y)‖L2(µ)µ(dy)

≤ C2
1 (a)‖y → ‖(qt−2a − 1)(·, y)‖L2(µ)‖L2(µ).

Now, is it known that ultracontractivity implies L2-contractivity. Thus, denoting again by α the
spectral gap,

‖(qt−2a − 1)(·, y)‖L2(µ) = ‖qt−2a(·, y)−
∫
qt−2a(x, y)µ(dx)‖L2(µ) ≤ e−(t−3a)α‖qa(·, y)− 1‖L2(µ)

which implies

sup
w,z∈IR

|qt(w, z)− 1| ≤ C2
1 (a)e−(t−3a)α

√∫ ∫
(qa(x, y)− 1)2µ(dx)µ(dy)

which converges exponentially to zero as t tends to infinity. It allows to conclude that

lim
t→+∞

sup
w,z∈IR

|qt(w, z)− 1| = 0.
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[13] G. Jona-Lasinio and R. Sénéor, Study of Stochastic Differential Equations by Constructive
Methods I*, J. Stat. Phys. 83, 5-6 (1996), 1109-1148

[14] O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques sur l’ultracontractivité,
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