Simplicial Complexes

Summer semester 2016

Prof. Dr. M. Keller

Sheet 8

(1) Show that A_{n} is isomorphic to

$$
\Sigma_{B}:=\Delta\left(X_{B}, \subseteq\right), \text { where } X_{B}:=\left\{\operatorname{span}\left(B^{\prime}\right) \mid \emptyset \neq B^{\prime} \subsetneq B\right\}
$$

where B is the basis of an $n+1$-dimensional abelian field V.
(2) Let e_{1}, e_{2}, e_{3} be the standard basis of \mathbb{R}^{3}. Let $T_{1,2}$ and $T_{1,3}$ be the triangulations of the plane span $\left\{e_{1}, e_{2}\right\}$ and $\operatorname{span}\left\{e_{1}, e_{3}\right\}$ in \mathbb{R}^{3} with regular triangles, i.e., the vertices and edges on the line span $\left\{e_{1}\right\}$ agree. Let Δ be the associated simplicial complex of the two triangulations. Give a system of apartments such that Δ becomes a building. Show that this building is not an incidence complex. What happens if you also add the triangulation $T_{2,3}$ to the complex?
(3) (a) Give an example of a chamber complex that is not an incidence complex.
(b) Give an example of an incidence complex that is not a chamber complex.
(c) Give an example of a chamber complex, that is an incidence complex but not a Coxeter complex.

Evaluation questions

- Did you have the prerequisites to follow the lecture?
- Did you find the lecture notes helpful?
- Was the course rather hard or easy?
- Was the pace rather slow or fast?
- Did the course become harder since it was held in English?
- How much additional time did you spend on the course a week (next to the lecture and the problem session)?
- Name three things that you like and dislike about the course (material, presentation, structure, handwriting, amount of details, overview, ...).
- As for the last chapter would rather hear about "Geometric and topological realizations" or "Higher order Laplace operators"?
- Did you mind the hours of the course?

