Simplicial Complexes

Summer semester 2016

Prof. Dr. M. Keller

Sheet 6

- (1) Let (Δ, \leq) , (Δ', \leq) be chamber complexes, let $\varphi : \Delta \to \Delta'$ be a chamber morphism and let typ' : $X_{\Delta'} \to I'$ be a coloring of Δ' .
 - (a) Show that $(\operatorname{typ}' \circ \varphi)|_{X_{\Delta}}$ is a coloring of Δ .
 - (b) Show that if typ: $X_{\Delta} \to I$ is a coloring of Δ then there is a bijection $f: I \to I'$ such that

$$\operatorname{typ}' \circ \varphi = f \circ \operatorname{typ}.$$

- (2) Draw A_2, A_3, C_2 and C_3 , (for definition of A_n and C_n see example in lecture after Theorem 1.9).
- (3) Show that the simplicial complex associated to the graph G = (V, E) given by

$$V = \mathbb{Z} \times \{\pm 1\}, \quad E = \{\{(k,\sigma), (m, -\sigma)\} \mid k, m \in \mathbb{Z}, k \neq m, \sigma \in \{\pm 1\}\}$$

is isomorphic to the poset of cosets $\Delta(\mathbb{Z}^2, \{(1,0), (0,1)\})$. Make a drawing.

- (4) Let G be a finitely generated group with minimal generating set S. Let $\delta(g, h) = \min\{i \mid g = s_1 \dots s_i h, s_1, \dots, s_n \in S \cup S^{-1}\}$ if $g \neq h$ and $\delta(g, g) = 0$.
 - (a) Show that δ is a metric.
 - (b) Assume such that $\Delta(G, S)$ is a simplicial complex. Show that

$$\delta(g,h) = d(gG_{\emptyset}, hG_{\emptyset}),$$

where d is the geodesic distance in $\Delta(G, S)$.