Simplicial Complexes

Summer semester 2016

Prof. Dr. M. Keller

Sheet 4

- (1) Is the poset of cosets $\Delta(G, S)$ of a finitely generated group G with a minimal generating set S that is a simplicial complex an incidence complex?
- (2) Let $\Delta(X_1, I_1)$ and $\Delta(X_2, I_2)$ be incidence complexes. Show that $\Delta(X_1, I_1) \times \Delta(X_2, I_2)$ is an incidence complex, i.e., show that there is an incidence relation I such that

$$\Delta(X_1 \times X_2, I) = \Delta(X_1, I_1) \times \Delta(X_2, I_2).$$

- (3) Let (Δ, \leq) be an ordered set. What is the relation between $\Delta(X, \leq)$ and $\Delta(X, \geq)$?
- (4) The hyper cube in \mathbb{R}^n is given by the set

$$C := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid -1 \le x_i \le 1, i = 1, \dots, n \}.$$

Let the faces of the cube be denoted by

$$X = \{ C \cap H_i^+, C \cap H_i^- \mid i = 1, \dots, n \}$$

where H_i^+ and H_i^- , n = 1, ..., n, are the hyper surfaces be given by

$$H_i^{\pm} := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_i = \pm 1 \}.$$

Show that $\Delta(X, \leq)$ is isomorphic to $C_n = \Delta(Y_n, \subseteq)$ with

$$Y_n := \{ S \subseteq \{\pm 1, \dots, \pm n\} \mid S \neq \emptyset, \ \{i, -i\} \not\subseteq S, \ i = 1, \dots, n \}.$$