Simplicial Complexes

Prof. Dr. M. Keller

Sheet 3

(1) Let $v_{0}, \ldots, v_{k} \in \mathbb{R}^{n}$ be affinely independent and $0<l<k$. Show that there is an isomorphism from $\Delta\left(v_{0}, \ldots, v_{l}\right) \times \Delta\left(v_{0}, \ldots, v_{l}\right)$ with the product order to $\Delta\left(v_{0}, \ldots, v_{k}\right)$.
(2) Draw all simplicial complexes (Δ, \leq) with $\# \Delta=8$. Which of these complexes are isomorphic to $\Delta_{1} \times \Delta_{2}$ with for simplicial complexes $\left(\Delta_{1}, \leq\right),\left(\Delta_{2}, \leq\right)$ with $\# \Delta_{1}=2$ and $\# \Delta_{2}=4$?
(3) Give a rigorous definition of the simplicial complex that arises from the triangulation of the Euclidean plane with regular triangles.
(4) Show that if (Δ, \leq) is an incidence complex, then $\left(A^{*}, \leq\right)$ is an incidence complex for all $A \in \Delta$.

