Simplicial Complexes

Summer semester 2016

Prof. Dr. M. Keller

Sheet 3

- (1) Let $v_0, \ldots, v_k \in \mathbb{R}^n$ be affinely independent and 0 < l < k. Show that there is an isomorphism from $\Delta(v_0, \ldots, v_l) \times \Delta(v_0, \ldots, v_l)$ with the product order to $\Delta(v_0, \ldots, v_k)$.
- (2) Draw all simplicial complexes (Δ, \leq) with $\#\Delta = 8$. Which of these complexes are isomorphic to $\Delta_1 \times \Delta_2$ with for simplicial complexes $(\Delta_1, \leq), (\Delta_2, \leq)$ with $\#\Delta_1 = 2$ and $\#\Delta_2 = 4$?
- (3) Give a rigorous definition of the simplicial complex that arises from the triangulation of the Euclidean plane with regular triangles.
- (4) Show that if (Δ, \leq) is an incidence complex, then (A^*, \leq) is an incidence complex for all $A \in \Delta$.