## Simplicial Complexes

Prof. Dr. M. Keller

## Sheet 2

1. Let $G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}\right\rangle$ be the free group with three generators with $S=$ $\{a, b, c\}$. Show that $S$ is minimal. Give an explicit description of the cosets $g G_{J}$ for $\emptyset \subseteq J \subseteq S, g \in G$. Which of these cosets coincide?
2. Let $G$ be a group with generating set $S$. Show that $S$ is minimal if and only if for all $s \in S$ and all $s_{1}, \ldots, s_{n} \in S \cup S^{-1}$ we have $s \neq s_{1} \ldots s_{n}$ (where $S^{-1}=\left\{r^{-1} \mid r \in S\right\}$ ).
3. Let $(\Delta, \leq),\left(\Delta^{\prime}, \leq\right)$ be two simplicial complexes. Show that $\Delta \times \Delta^{\prime}$ with the product order

$$
\left(x, x^{\prime}\right) \leq\left(y, y^{\prime}\right) \quad \Leftrightarrow \quad x \leq y, x^{\prime} \leq y^{\prime}
$$

is a simplicial complex.
4. Show that for $G=\mathbb{Z}^{d}$ the set $S=\left\{e_{1}, \ldots, e_{d}\right\}$, with $e_{k}$ being the vector with all zeros except for the $k$-th component which has a one, $k=1, \ldots, d$, is a minimal generating set and

$$
\bigcap_{s \in S \backslash J} G_{S \backslash\{s\}}=G_{J} \text { for all } J \subseteq S
$$

