Erratum to

"The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces"

Christian Bär

August, 1997

The paper "The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces", Arch. Math. **59**, 65–79 (1992), contains some misprints which I would like to correct in this erratum.

One important point:

In Theorem 5 on p. 79 (and also on p. 78, l. 6) replace [-(m+1)/N] < i by $-[(m-2)/N] \le i$. Similarly, replace [(1-m-N')/N] < i in Theorem 5 by $-[(m-2+N')/N] \le i$.

Some fairly obvious misprints:

- p. 66, l. 12: Replace $[g, \bar{b}_0 \cdot \Theta(\Lambda)]$ by $[g, \Theta(\Lambda)]$.
- p. 68, l. 5: Replace $(dg_0 \cdot \bar{X})^{SO}([g_0, \bar{b}_0]) = \frac{d}{dt}[g_0 e^{tX}, \bar{b}_0(\Theta \cdot \Lambda(t))]|_{t=0}$ by $(dg_0 \cdot \bar{X})^{SO}([g_0, 1_{SO}]) = \frac{d}{dt}[g_0 e^{tX}, \Theta \cdot \Lambda(t)]|_{t=0}$.
- p. 68, l. 20: Replace $\frac{\nabla}{dt}[e^{tX}, \bar{b}_0 \cdot (\Theta \cdot \Lambda(t))]|_{t=0}$ by $\frac{\nabla}{dt}[e^{tX}, \Theta \cdot \Lambda(t)]|_{t=0}$.
- p. 69, l. 14: Add $|_{t=0}$.
- p. 71, l. 6: Replace $A\pi_{\gamma}(g)v$ by $A\pi_{\gamma}(g^{-1})v$.
- p. 72, l. 2: Replace

$$E_3 = \frac{1}{T} \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right)$$

by

$$E_3 = \left(\begin{array}{cc} i & 0\\ 0 & -i \end{array}\right)$$

- p. 72, l. 18: Replace Y_1 by X_1 .
- p. 73: In the matrix for $\pi_{n*}(X_3)$ replace -1 by -n.
- p. 76, l. 2: Replace \mathbb{Z}_n by \mathbb{Z}_N .
- p. 77, l. 2: Replace $\varrho_1 \otimes \varrho_{-1}$ by $\varrho_1 \oplus \varrho_{-1}$.
- p. 78, l. 9: Replace

$$\begin{pmatrix} e^{2\pi i q(1+N')/N} & 0 \\ 0 & e^{2\pi i (1-N')/N} \end{pmatrix}$$

by

$$\left(\begin{array}{cc} e^{2\pi i q(1+N')/N} & 0\\ 0 & e^{2\pi i q(N'-1)/N} \end{array}\right)$$