Variational Problems in Extrinsic Geometry

And their Relation to General Relativity

Prof. Dr. Jan Metzger Universität Potsdam

30. April 2018

Part I: The isoperimetric problem

The Isoperimetric Problem

Description

- Let (M,g) be an *n*-dimensional manifold.
- Given $V \in (0,\infty)$ let:

 $A_g(V) := \inf \left\{ \mathcal{H}^{n-1}(\partial \Omega) \mid \Omega \subset M \text{ and } \mathcal{L}^n(\Omega) = V
ight\}.$

The function

$$V \mapsto A_g(V)$$

is called the *isoperimetric profile* of (M, g).

• $\Omega \subset M$ is called *isoperimetric* if $\mathcal{H}^{n-1}(\partial \Omega) = A_g(\mathcal{L}^n(\Omega))$.

First and Second Variation

Euler-Lagrange equation and Jacobi operator

Let $\Omega \subset M$ be isoperimetric. Let $\Sigma := \partial \Omega$. Then:

- The mean curvature H = const on $\partial \Omega$.
- Σ is stable under volume-preserving variations. That is:

$$\begin{split} \int_{\Sigma} f^2 \big(|A|^2 + \mathsf{Ric}(\nu, \nu) \big) \, \mathrm{d}\mu &\leq \int_{\Sigma} |\nabla f|^2 \, \mathrm{d}\mu \\ & \forall f \in \mathcal{C}^1(\Sigma) \text{ with } \int_{\Sigma} f \, \mathrm{d}\mu = 0. \end{split}$$

- A is the second fundamental form of $\Sigma \subset M$.
- $\operatorname{Ric}(\nu, \nu)$ is the Ricci curvature of g normal to Σ .

Solutions to the isoperimetric problem – Part 1

Euclidean space

In \mathbb{R}^n the isoperimetric regions are the spheres $S_r(p)$. For given volume V these are unique up to translation.

$$A_g(V) = \left(\omega_{n-1}n^{n-1}\right)^{\frac{1}{n}}V^{\frac{n-1}{n}}$$

Hyperbolic space

Geodesic spheres, unique up to isometries.

Compact manifolds

Let $\bar{V} = \mathcal{L}^n(M)$.

- ► For all $V \in (0, \frac{1}{2}\overline{V}]$ there exists an isoperimetric region Ω_V with $\mathcal{L}^n(\Omega_V) = V$.
- Ω_V is not necessarily unique.
- $\partial \Omega_V$ is not necessarily smooth.

Isoperimetric regions for small volumes – Part 1

Let (M, g) be a compact manifold and $\overline{R} = \max_M R_g$. Expansion of the Isoperimetric Profile, Druet '02, Nardulli '09 As $V \rightarrow 0$:

$$A_{g}(V) = \underbrace{\left(\omega_{n-1}n^{n-1}\right)^{\frac{1}{n}}V^{\frac{n-1}{n}}\left(1}_{\text{Euclidean Part}} - \underbrace{\frac{\bar{R}}{2n(n+1)}\left(\frac{nV}{\omega_{n-1}}\right)^{\frac{2}{n}}}_{\text{First correction}} + o(V^{\frac{2}{n}})\right).$$

Note

We need less area to enclose the same (small) volume if $\bar{R} > 0$ compared to Euclidean space.

Isoperimetric regions for small volumes – Part 2

Isoperimetric regions for small volumes, Druet '02, Nardulli '09

There exists $V_0 \in (0, \infty)$ such that for all isoperimetric regions Ω with $\mathcal{L}^n(\Omega) \in (0, V_0)$ we have:

- $\partial \Omega$ is a smooth topological sphere.
- Let $(\Omega_V)_{V \in (0, V_0)}$ any family of isoperimetric regions such that $\mathcal{L}^n(\Omega_V) = V$. The rescaled regions $\tilde{\Omega}_V := V^{-1/n}\Omega_V$ converge (up to taking a subsequence) smoothly to a Euclidean ball with volume 1.
- Hence, each Ω_V is close to a geodesic sphere with volume V.
- Let $S := \{x \in M \mid R_g(x) = \overline{R}\}$ then

 $\lim_{V\to 0} \operatorname{dist}(\Omega_V, S) = 0.$

Small Stable CMC surfaces

Small Stable CMC surfaces, Ye 1991

Let (M, g) be a Riemannian manifold and let \bar{x} be a non-degenerate critical point of the scalar curvature. Then there exist:

- ▶ an open neighbohood U of \bar{x} , $h_0 \in (0,\infty)$,
- ▶ for each $h \in (h_0, \infty)$ a smooth spherical surface Σ_h

Such that the following holds:

• Σ_h has constant mean curvature h,

•
$$U \setminus \{\bar{x}\} = \bigcup_{h \in (h_0,\infty)} \Sigma_h$$
, and

• $\Sigma_h \cap \Sigma_{h'} = \emptyset$ if $h \neq h'$.

Remark

- We have perturbative uniqueness of the Σ_h .
- If x̄ is a non-degenerate maximum of R_g, then the Σ_h are volume preserving stable.

Isoperimetric regions for small volumes - Part 3

Work in progress

Let (M, g) be a Riemannian manifold and assume that $\bar{x} \in M$ is the unique non-degenerate maximum of R_g .

Then there exists $h_1 \in (h_0, \infty)$ with the following property:

If $h \in (h_1, \infty)$ and Σ_h is the surface from Ye's theorem with $\Sigma_h = \partial \Omega_h$ then Ω_h is the unique isoperimetric region for the volume $\mathcal{L}^n(\Omega_h)$.

Solutions to the isoperimetric problem – The non-compact case

Non-compact manifolds with known isoperimetric profile

- Bray-Morgan '02: Comparison result for certain rotationally symmetric manifolds
- Two dimensional surfaces
- Simple quotients of space forms and products thereof
- Hadamard manifolds (estimates in one direction)

BUT

Very little known in general, non-symmetric situations.

Problem

Minimizing sequences sub-converge to isoperimetric regions, but may have part of the volume drifting to infinity.

Solutions to the Isoperimetric Problem - Schwarzschild

Schwarzschild metric

Let m>0, then on $\mathbb{R}^n\setminus\{0\}$ the *Schwarzschild metric* is given by

 $(g_m)_{ij} := \phi_m^{\frac{4}{n-2}} \delta_{ij}$ with $\phi_m(x) = 1 + \frac{m}{2|x|^{n-2}}$

Properties

- asymptotically flat, scalar flat
- rotationally symmetric
- at $r_h = \left(\frac{m}{2}\right)^{\frac{1}{n-2}}$ there is a minimal surface
- reflection at S_{r_h} is an isometry of g_m

Solution of the isoperimetric Problem in Schwarzschild (Bray '98, Bray-Morgan '02)

If m > 0 the region $B_r \setminus (B_{r_h} \setminus \{0\})$ is the unique isoperimetric region in $(\mathbb{R}^n \setminus B_{r_h}, g_m)$.

Asymptotically flat manifolds

Definition

Let $\gamma \in (0, \infty)$. A Riemannian manifold (M, g) is called *asymptotically* flat with exponent γ if:

- ▶ There is a diffeomorphism $x : \mathbb{R}^n \setminus B_{1/2} \to M \setminus K$ where $K \subset M$ is compact.
- With respect to Cartesian coordinates on $\mathbb{R}^n \setminus B_{1/2}$

$$\sup_{\mathbb{R}^n\setminus B_{1/2}}r^{\gamma}|(g-\delta)_{ij}|+r^{1+\gamma}|\partial_k(g-\delta)_{ij}|+r^{2+\gamma}|\partial_k\partial_l(g-\delta)_{ij}|<\infty.$$

- Here $r = \sqrt{\sum_{i=1}^{n} x_i^2}$.
- We use g to denote both the metric on M as well as its pull-back by x to ℝⁿ \ B_{1/2}.

Asymptotically Schwarzschild manifolds

Definition

We say that an asymptotically flat manifold (M,g) is C^k -asymptotic to Schwarzschild with mass m and exponent $\gamma > 0$ if there exist asymptotically flat coordinates such that

$$\sum_{l=0}^k |x|^{n-2+\gamma+l} |\partial^l (g-g_m)_{ij}| < \infty.$$

Expansion

This implies the expansion

$$g = \left(1 + \frac{2m}{(n-2)|x|^{n-2}}\right)\delta + O(|x|^{2-n-\gamma})$$

with extra decay of up to k derivatives of the perturbation.

Isoperimetric regions in Asymptotic Schwarzschild

Theorem: Existence (Eichmair-M '13)

Let (M,g) be an asymptotically flat manifold which is C^0 -asymptotic to Schwarzschild with mass m > 0 for some exponent $\gamma > 0$. Then:

- There exists V₀ < ∞ and for each V > V₀ an isoperimetric region Ω_V with Lⁿ(Ω_V) = V.
- Ω_V is connected.
- ► As $V \to \infty$ if we blow-down Ω_V to volume $\frac{\omega_{n-1}}{n}$, we obtain centered balls with volume $\frac{\omega_{n-1}}{n}$.

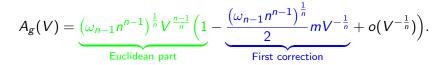
Theorem: Uniqueness (Eichmair-M '13)

If (M,g) is C^2 -asymptotic to Schwarzschild with mass m > 0 and exponent $\gamma > 0$ then the Ω_V from the previous theorem are the unique isoperimetric surfaces of their volume.

Asymptotic Schwarzschild, contd.

Corollary

The isoperimetric profile of such (M,g) satisfies for $V \to \infty$ that:



In particular $\tilde{m}_{iso}(M,g) = m$ where

$$\widetilde{m}_{iso}(M,g) = \limsup_{V \to \infty} \frac{2}{\omega_{n-1}} \left(\frac{A_g(V)}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \left(V - \frac{\omega_{n-1}}{n} \left(\frac{A_g(V)}{\omega_{n-1}} \right)^{\frac{n}{n-1}} \right)$$

Asymptotic Schwarzschild, contd.

Theorem: Centering (Huisken-Yau '96, Huang '10, Eichmair-M '13) If (M,g) is C^2 -asymptotic to Schwarzschild with mass m > 0 and exponent $\gamma > 0$ and if the Scalar curvature is asymptotically even:

$$|x|^{n+1+\gamma}|R_g(x)-R_g(-x)|\leq C$$

Let $a \in \mathbb{R}^n$ denote the relativistic center of mass of (M, g). Then $\partial \Omega_V$ can be written as the graph of a function u_V over $S_{r_V}(a)$ with $r_V = \left(\frac{nV}{\omega_{n-1}}\right)^{1/n}$ such that the scale invariant C^2 -norm of u_V satisfy

$$\|u_V\|_{C^2}\leq Cr_V^{-1-\gamma}.$$

Isoperimetric regions are not off-center

Definition

Given $\tau > 1$ and $\eta \in (0,1)$. We say that $\Omega \subset (M,g)$ is (τ,η) -off center if:

• $\mathcal{L}_{g}^{n}(\Omega)$ so large that there exists $S_{r} = \partial B_{r}$ with $\mathcal{L}_{g}^{n}(B_{r}) = \mathcal{L}_{g}^{n}(\Omega)$,

•
$$\mathcal{H}_g^{n-1}(\partial \Omega \setminus B_{\tau r}) \geq \eta \mathcal{H}_g^{n-1}(S_r).$$

Theorem (Eichmair-M '13)

Let (M,g) be \mathcal{C}^0 -asymptotic to Schwarzschild with mass m > 0 and exponent $\gamma > 0$. There exists a constant c > 0 depending only on n such that for each $(\tau, \eta) \in (1, \infty) \times (0, 1)$ and constant $\Theta > 0$ there exists a constant $V_0 > 0$ such that the following holds: given a bounded region Ω that is (τ, η) -off center with $\mathcal{H}_g^{n-1}(\partial \Omega)\mathcal{L}_g^n(\Omega)^{1-n/n} \leq \Theta$ and such that $\mathcal{H}_g^{n-1}(\partial \Omega \cap B_{\sigma}) \leq \Theta \sigma^{n-1}$ holds for all $\sigma \geq 1$ one has

$$\mathcal{H}_{g}^{n-1}(S_{r})+c\eta m\pi\left(1-rac{1}{ au}
ight)^{2}r\leq\mathcal{H}_{g}^{n-1}(\partial\Omega)$$

The story continues ...

... in asymptotically flat 3-manifolds with $R_g \ge 0$:

► Carlotto, Chodosh, Eichmair '16:

- Existence of isoperimetric regions Ω_k with lim_{k→∞} Lⁿ(Ω_k) = ∞.
- M \ (U_{V∈(V₀,∞)}Ω_k) is compact or equal to M (later: second case is not possible if n = 3 unless (M, g) = (ℝ³, δ)).
- Important ingredient: Interplay of area minimizing surfaces and non-negative scalar curvature.
- Shi, Yugang '16: Existence of isoperimetric regions Ω_V for all V ∈ (V₀,∞).
- ► Chodosh, Eichmair, Shi, Yu: Existence and uniqueness of Ω_V for all V ∈ (V₀,∞).

18 / 22

Open questions:

Existence in higher diemensions?

► What about the interior? Isoperimetric regions of intermediate Variational Problems in Extrinsic Geometry 30. April 2018

The story continues ...

... with geometric invariants:

- Nerz '15: Foliations by stable CMC surfaces and the ADM center of mass.
- Cederbaum, Cortier, Sakovich, '???: Space-time version of the center of mass using foliations of surfaces satisfying the equation |H| = const.
 Here H is the mean curvature vector of the surface in question in space-time.

Open questions

- ▶ What is the true *canonical foliation* of the asymptotic end?
- Is there a variational problem for the canonical foliation?

... in other asymptotic geometries:

- Chodosh '16: Large isoperimetric regions in a large class of asymptotically hyperbolic manifolds.
- ► Chodosh, Eichmair, Volkmann '17: Manifolds asymptotic to cones.

The story continues ...

... with higher order functionals:

Instead of the isoperimeric problen one can consider a variational problem for the Geroch-mass:

$$m_{G}(\Sigma) = rac{\mathcal{H}^{2}(\Sigma)^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} \mathcal{H}^{2} \,\mathrm{d}\mu
ight).$$

or the Hawking-mass:

$$m_{\mathcal{H}}(\Sigma) = rac{\mathcal{H}^2(\Sigma)^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} |\mathcal{H}|^2 \,\mathrm{d}\mu
ight).$$

References

- Druet: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Amer. Math. Soc. 130 (2002).
- Nardulli: The isoperimetric profile of a smooth Riemannian manifold for small volumes. Ann. Global Anal. Geom. 36 (2009).
- Ye: Foliation by constant mean curvature spheres. Pacific J. Math. 147 (1991).
- Chodosh, Eichmair, Volkmann: Isoperimetric structure of asymptotically conical manifolds. J. Differential Geom. 105 (2017).
- Bray: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature, Thesis (Ph.D.)-Stanford University (1997).
- Bray, Morgan: An isoperimetric comparison theorem for Schwarzschild space and other manifolds. Proc. Amer. Math. Soc. 130 (2002).
- Eichmair, Metzger: Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. Math. 194 (2013).
- Huisken, Yau: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124 (1996).
- Huang: Foliations by Stable Spheres with Constant Mean Curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300 (2010).
- Nerz: Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry. Calc. Var. Partial Differ. Equations 54 (2015).
- Carlotto, Chodosh, Eichmair: Effective versions of the positive mass theorem. Invent. Math. 206 (2016).
- Shi: The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature. IMRN 2016 (2016).
- Chodosh, Eichmair, Shi, Yu: Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds. arXiv:1606.04626.
- Chodosh: Large isoperimetric regions in asymptotically hyperbolic manifolds. Comm. Math. Phys. 343 (2016).