The Positive Mass Conjecture for closed Riemannian manifolds

Andreas Hermann¹ Emmanuel Humbert²

¹Institut für Mathematik Universität Potsdam Germany

²Laboratoire de Mathématiques et Physique Théorique Université de Tours France

Potsdam, April 23, 2018

Outline

The Positive Mass Conjecture

A more general notion of mass

Smooth Yamabe invariant

Asymptotically flat Riemannian manifolds

A complete Riemannian manifold (M, g) of dimension $n \ge 3$ is called asymptotically flat of order $\tau > 0$ if

• there is a compact subset $K \subset M$ and a diffeomorphism

$$\Phi: \quad \mathbb{R}^n \setminus B_R \to M \setminus K,$$

where B_R is the closed ball of radius R at 0, such that

▶ in Cartesian coordinates on \mathbb{R}^n we have for all i, j, k, ℓ

$$\Phi^* g_{ij} - \delta_{ij} = O(r^{- au}),$$

 $\partial_k \Phi^* g_{ij} = O(r^{- au-1}),$
 $\partial_k \partial_\ell \Phi^* g_{ij} = O(r^{- au-2}).$

as $r = |x| \to \infty$.

The ADM mass

Let (M, g) Riemannian manifold of dimension $n \ge 3$ such that

- g is asymptotically flat of order $\tau > \frac{n-2}{2}$,
- *g* has scalar curvature $scal_g \in L^1(M)$.

Then

$$m_{ ext{ADM}}(M,g) := \lim_{r o \infty} rac{1}{\omega_{n-1}} \sum_{i,j=1}^n \int_{\mathcal{S}_r} (\partial_i \Phi^* g_{ij} - \partial_j \Phi^* g_{ii})
u^j \, dA$$

exists and is independent of the choice of Φ (Bartnik 1986).

 $\begin{array}{l} \Phi \colon \mathbb{R}^n \setminus B_R \to M \setminus K \text{ diffeomorphism,} \\ S_r \colon \text{sphere of radius } r \text{ at } 0, \\ \nu \colon \text{outward unit normal vector field on } S_r, \\ \omega_{n-1} = \operatorname{vol}(S^{n-1}) \end{array}$

The mass of a closed Riemannian manifold

Let (M, g) closed Riemannian manifold, $n = \dim M \ge 3$. Define the conformal Laplace operator of (M, g)

$$L_g := \Delta_g + \frac{n-2}{4(n-1)} \operatorname{scal}_g.$$

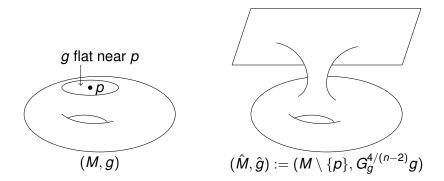
Assume that

- all eigenvalues of L_g are positive,
- ▶ *g* is flat on an open neighborhood of a point $p \in M$. Then the Green function G_q of L_q at *p* has the expansion

$$G_g(x) = rac{1}{(n-2)\omega_{n-1}r(x)^{n-2}} + m_p + o(1) \quad ext{as } x o p,$$

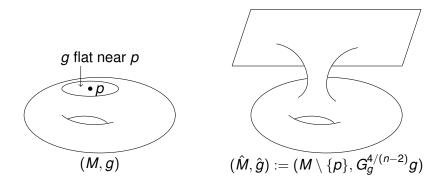
where $r(x) = \text{dist}_g(p, x)$ and $m_p \in \mathbb{R}$. m_p is called the mass of (M, g) at p.

The mass and the ADM mass



Schoen 1984: (\hat{M}, \hat{g}) is asymptotically flat of order n - 2with $\operatorname{scal}_{\hat{g}} \equiv 0$ and ADM mass $m_{ADM} = C \cdot m_p$ with C > 0. Example: If $(M, g) = (S^n, g_{can})$, then $(\hat{M}, \hat{g}) = (\mathbb{R}^n, g_{eucl})$.

The mass and the ADM mass



Schoen 1984: (\hat{M}, \hat{g}) is asymptotically flat of order n - 2with $\operatorname{scal}_{\hat{g}} \equiv 0$ and ADM mass $m_{ADM} = C \cdot m_p$ with C > 0. Example: If $(M, g) = (S^n, g_{can})$, then $(\hat{M}, \hat{g}) = (\mathbb{R}^n, g_{eucl})$.

Two Positive Mass Conjectures

Conjecture (PMC closed)

Let (M, g) closed Riemannian manifold, $n = \dim M \ge 3$. Assume $L_g > 0$ and g flat on an open neighborhood of $p \in M$.

- 1. Then $m_p \ge 0$.
- 2. If $m_p = 0$ then (M, g) is conformally diffeomorphic to (S^n, g_{can}) .

Conjecture (PMC asymptotically flat)

Let (M, g) be asymptotically flat of order $\tau > \frac{n-2}{2}$, assume that $\operatorname{scal}_g \in L^1(M)$ and that $\operatorname{scal}_g \ge 0$ on M.

- 1. Then $m_{ADM} \ge 0$.
- 2. If $m_{ADM} = 0$, then (M, g) is isometric to Euclidean \mathbb{R}^n .

These two conjectures are equivalent (follows from Schoen 1984, Schoen 1989, Lee-Parker 1987).

Two Positive Mass Conjectures

Conjecture (PMC closed)

Let (M, g) closed Riemannian manifold, $n = \dim M \ge 3$. Assume $L_g > 0$ and g flat on an open neighborhood of $p \in M$.

- 1. *Then* $m_p \ge 0$.
- 2. If $m_p = 0$ then (M, g) is conformally diffeomorphic to (S^n, g_{can}) .

Conjecture (PMC asymptotically flat)

Let (M, g) be asymptotically flat of order $\tau > \frac{n-2}{2}$, assume that $\operatorname{scal}_g \in L^1(M)$ and that $\operatorname{scal}_g \ge 0$ on M.

1. Then $m_{ADM} \ge 0$.

2. If $m_{ADM} = 0$, then (M, g) is isometric to Euclidean \mathbb{R}^n .

These two conjectures are equivalent (follows from Schoen 1984, Schoen 1989, Lee-Parker 1987).

The Positive Mass Conjecture

This conjecture has been proved e.g. in the following cases:

- ▶ n ∈ {3,...,7} (Schoen-Yau 1979)
- ► *M* spin manifold (Witten 1981)
- ► (*M*, *g*) closed locally conformally flat (Schoen-Yau 1988)

Proof of the general case announced by Lohkamp 2006 and by Schoen-Yau 2017

We introduce a more general notion of mass.

The Positive Mass Conjecture

This conjecture has been proved e.g. in the following cases:

- ▶ n ∈ {3,...,7} (Schoen-Yau 1979)
- ► *M* spin manifold (Witten 1981)
- ► (*M*, *g*) closed locally conformally flat (Schoen-Yau 1988)

Proof of the general case announced by Lohkamp 2006 and by Schoen-Yau 2017

We introduce a more general notion of mass.

A more general notion of mass

Let (M, g) closed Riemannian manifold, $n = \dim M \ge 3$. Let $f \in C^{\infty}(M, \mathbb{R})$. Define

$$P_f := \Delta_g + f.$$

Special case: If $f = \frac{n-2}{4(n-1)} \operatorname{scal}_g$, then $P_f = L_g$.

Assume that

- all eigenvalues of P_f are positive,
- ▶ there is an open neighborhood *U* of $p \in M$ such that *g* is flat on *U* and $f \equiv 0$ on *U*.

Then the Green function G_f of P_f at p has the expansion

$$G_f(x) = rac{1}{(n-2)\omega_{n-1}r(x)^{n-2}} + m_f + o(1) \quad ext{as } x o p,$$

where $r(x) = \text{dist}_g(p, x)$ and $m_f \in \mathbb{R}$. m_f is called the mass of P_f at p.

A more general notion of mass

Let (M, g) closed Riemannian manifold, $n = \dim M \ge 3$. Let $f \in C^{\infty}(M, \mathbb{R})$. Define

$$P_f := \Delta_g + f.$$

Special case: If $f = \frac{n-2}{4(n-1)} \operatorname{scal}_g$, then $P_f = L_g$. Assume that

- all eigenvalues of P_f are positive,
- ▶ there is an open neighborhood *U* of $p \in M$ such that *g* is flat on *U* and $f \equiv 0$ on *U*.

Then the Green function G_f of P_f at p has the expansion

$$G_f(x) = rac{1}{(n-2)\omega_{n-1}r(x)^{n-2}} + m_f + o(1) \quad ext{as } x o p,$$

where $r(x) = \text{dist}_g(p, x)$ and $m_f \in \mathbb{R}$. m_f is called the mass of P_f at p.

Variational characterization of the mass

Let $\delta > 0$ such that on $B_{2\delta}(p)$ we have: g flat and $f \equiv 0$. Let $\eta \in C^{\infty}(M, \mathbb{R})$ such that

▶
$$0 \le \eta \le 1$$

▶ $\eta \equiv \frac{1}{(n-2)\omega_{n-1}}$ on $B_{\delta}(p)$
▶ $\eta \equiv 0$ on $M \setminus B_{2\delta}(p)$

Define $I_f : C^\infty(M, \mathbb{R}) \to \mathbb{R}$ by

$$I_f(u) := \int_{M \setminus \{p\}} (\eta r^{2-n} + u) P_f(\eta r^{2-n} + u) dv^g.$$

Theorem (H.-Humbert 2016) *We have*

$$m_f = -\inf\{I_f(u) \mid u \in C^{\infty}(M,\mathbb{R}), u(p) = 0\}.$$

Variational characterization of the mass

Let $\delta > 0$ such that on $B_{2\delta}(p)$ we have: g flat and $f \equiv 0$. Let $\eta \in C^{\infty}(M, \mathbb{R})$ such that

▶
$$0 \le \eta \le 1$$

▶ $\eta \equiv \frac{1}{(n-2)\omega_{n-1}}$ on $B_{\delta}(p)$
▶ $\eta \equiv 0$ on $M \setminus B_{2\delta}(p)$

Define $I_f : C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ by

$$I_f(u) := \int_{M \setminus \{p\}} (\eta r^{2-n} + u) P_f(\eta r^{2-n} + u) dv^g.$$

Theorem (H.-Humbert 2016) *We have*

$$m_f = -\inf\{I_f(u) \mid u \in C^{\infty}(M,\mathbb{R}), u(p) = 0\}.$$

Define $I_f: C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ by

$$I_f(u) := \int_{M \setminus \{p\}} (\eta r^{2-n} + u) P_f(\eta r^{2-n} + u) dv^g.$$

Theorem (H.-Humbert 2016) *We have*

$$m_f = -\inf\{I_f(u) \mid u \in C^{\infty}(M, \mathbb{R}), u(p) = 0\}.$$

In order to prove (PMC) it is sufficient to find $u \in C^{\infty}(M, \mathbb{R})$ with u(p) = 0 and $I_f(u) \le 0$. We have succeeded to find such u for spin manifolds but not for

the general case.

Define $I_f: C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ by

$$I_f(u) := \int_{M \setminus \{p\}} (\eta r^{2-n} + u) P_f(\eta r^{2-n} + u) dv^g.$$

Theorem (H.-Humbert 2016) *We have*

$$m_f = -\inf\{I_f(u) \mid u \in C^{\infty}(M,\mathbb{R}), u(p) = 0\}.$$

In order to prove (PMC) it is sufficient to find $u \in C^{\infty}(M, \mathbb{R})$ with u(p) = 0 and $I_f(u) \le 0$.

We have succeeded to find such *u* for spin manifolds but not for the general case.

Real analytic families of masses Let $f, \varphi \in C^{\infty}(M, \mathbb{R})$. For $a \ge 0$ we define

$$P_a := \Delta_g + f + a\varphi.$$

Assume that

- for a = 0 all eigenvalues of P_0 are positive,
- there is an open neighborhood U of p ∈ M such that g is flat on U and f ≡ 0 ≡ φ on U.

Theorem (H.-Humbert 2016)

Let m(a) be the mass of P_a . Then $a \mapsto m(a)$ is real analytic and convex.

- ▶ If there exists $q \in M$ such that $\varphi(q) < 0$, then there exists $a_{\infty} < \infty$ such that m(a) can be defined for all $a \in [0, a_{\infty})$ and we have $m(a) \to \infty$ as $a \to a_{\infty}$.
- If φ ≥ 0 on M, then m(a) can be defined for all a ≥ 0 and a ↦ m(a) is non-increasing with lim_{a→∞} m(a) > -∞.

Real analytic families of masses Let $f, \varphi \in C^{\infty}(M, \mathbb{R})$. For $a \ge 0$ we define

$$P_a := \Delta_g + f + a\varphi.$$

Assume that

- for a = 0 all eigenvalues of P_0 are positive,
- there is an open neighborhood U of p ∈ M such that g is flat on U and f ≡ 0 ≡ φ on U.

Theorem (H.-Humbert 2016)

Let m(a) be the mass of P_a . Then $a \mapsto m(a)$ is real analytic and convex.

- If there exists q ∈ M such that φ(q) < 0, then there exists a_∞ < ∞ such that m(a) can be defined for all a ∈ [0, a_∞) and we have m(a) → ∞ as a → a_∞.
- If φ ≥ 0 on M, then m(a) can be defined for all a ≥ 0 and a → m(a) is non-increasing with lim_{a→∞} m(a) > -∞.

Positive operators with negative mass

Consider the sphere S^n with the standard metric g_{can} . Let $p \in S^n$ and let g be a metric conformal to g_{can} such that

- g is flat on an open neighborhood of p
- $\operatorname{scal}_g \geq 0$ on S^n .

For $a \ge 0$ consider the mass m(a) at p of the operator

$$P_a := \Delta_g + \frac{n-2}{4(n-1)}\operatorname{scal}_g + a\operatorname{scal}_g$$

- m(0) is the mass of the round sphere: m(0) = 0
- Since a → m(a) is strictly non-increasing, the mass m(a) of P_a is negative for all a > 0.

Positive operators with negative mass

Consider the sphere S^n with the standard metric g_{can} . Let $p \in S^n$ and let g be a metric conformal to g_{can} such that

- ▶ g is flat on an open neighborhood of p
- $\operatorname{scal}_g \geq 0$ on S^n .

For $a \ge 0$ consider the mass m(a) at p of the operator

$$P_a := \Delta_g + \frac{n-2}{4(n-1)} \operatorname{scal}_g + a \operatorname{scal}_g$$

- m(0) is the mass of the round sphere: m(0) = 0
- Since a → m(a) is strictly non-increasing, the mass m(a) of P_a is negative for all a > 0.

Conformal Yamabe invariant

Let (M, g) be a closed Riemannian manifold of dimension $n \ge 3$. Define $Q_g: C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ by

$$Q_g(u) := rac{\int_M u L_g u \, dv^g}{\|u\|_{L^p}^2}, \quad p := rac{2n}{n-2}$$

and define the conformal Yamabe invariant of (M, [g]) by

$$Y(M,[g]) := \inf \{ Q_g(u) \mid u \in C^{\infty}(M,\mathbb{R}), \ u \neq 0 \}.$$

From the solution of the Yamabe problem we know (Aubin 1976, Schoen 1984):

- For all (M, g) we have $Y(M, [g]) \leq Y(S^n, [g_{can}])$
- ► We have equality if and only if (*M*, *g*) is conformally diffeomorphic to (*Sⁿ*, *g*_{can}).

Define the smooth Yamabe invariant of *M* by

 $\sigma(M) := \sup\{Y(M, [g]) \mid g \text{ Riemannian metric on } M\}.$

Example: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$ (Schoen 1989) Open question: Which closed manifolds *M* satisfy $\sigma(M) < \sigma(S^n)$? Conjecture (Schoen): $\sigma(S^n/\Gamma) = (\#\Gamma)^{-2/n}\sigma(S^n)$. Useful tool: Construct a test function, use $m_p > 0$ (work in progress).

From the solution of the Yamabe problem we know (Aubin 1976, Schoen 1984):

- For all (M, g) we have $Y(M, [g]) \leq Y(S^n, [g_{can}])$
- ► We have equality if and only if (*M*, *g*) is conformally diffeomorphic to (*Sⁿ*, *g*_{can}).

Define the smooth Yamabe invariant of M by

 $\sigma(M) := \sup\{Y(M, [g]) \mid g \text{ Riemannian metric on } M\}.$

Example: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$ (Schoen 1989) Open question: Which closed manifolds *M* satisfy $\sigma(M) < \sigma(S^n)$? Conjecture (Schoen): $\sigma(S^n/\Gamma) = (\#\Gamma)^{-2/n}\sigma(S^n)$. Useful tool: Construct a test function, use $m_p > 0$ (work in progress).

From the solution of the Yamabe problem we know (Aubin 1976, Schoen 1984):

- For all (M, g) we have $Y(M, [g]) \leq Y(S^n, [g_{can}])$
- ► We have equality if and only if (*M*, *g*) is conformally diffeomorphic to (*Sⁿ*, *g*_{can}).

Define the smooth Yamabe invariant of M by

 $\sigma(M) := \sup\{Y(M, [g]) \mid g \text{ Riemannian metric on } M\}.$

Example: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$ (Schoen 1989)

Open question: Which closed manifolds M satisfy $\sigma(M) < \sigma(S^n)$? Conjecture (Schoen): $\sigma(S^n/\Gamma) = (\#\Gamma)^{-2/n}\sigma(S^n)$. Useful tool: Construct a test function, use $m_p > 0$ (work in progress).

From the solution of the Yamabe problem we know (Aubin 1976, Schoen 1984):

- For all (M, g) we have $Y(M, [g]) \leq Y(S^n, [g_{can}])$
- ► We have equality if and only if (*M*, *g*) is conformally diffeomorphic to (*Sⁿ*, *g*_{can}).

Define the smooth Yamabe invariant of M by

 $\sigma(M) := \sup\{Y(M, [g]) \mid g \text{ Riemannian metric on } M\}.$

Example: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$ (Schoen 1989) Open question: Which closed manifolds *M* satisfy $\sigma(M) < \sigma(S^n)$? Conjecture (Schoen): $\sigma(S^n/\Gamma) = (\#\Gamma)^{-2/n}\sigma(S^n)$. Useful tool: Construct a test function, use $m_p > 0$ (work in progress).

From the solution of the Yamabe problem we know (Aubin 1976, Schoen 1984):

- For all (M, g) we have $Y(M, [g]) \leq Y(S^n, [g_{can}])$
- ► We have equality if and only if (*M*, *g*) is conformally diffeomorphic to (*Sⁿ*, *g*_{can}).

Define the smooth Yamabe invariant of M by

 $\sigma(M) := \sup\{Y(M, [g]) \mid g \text{ Riemannian metric on } M\}.$

Example: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$ (Schoen 1989) Open question: Which closed manifolds *M* satisfy $\sigma(M) < \sigma(S^n)$? Conjecture (Schoen): $\sigma(S^n/\Gamma) = (\#\Gamma)^{-2/n}\sigma(S^n)$. Useful tool: Construct a test function, use $m_p > 0$ (work in progress).

References

 A. Hermann, E. Humbert, About the mass of certain second order elliptic operators, Adv. Math. 294, 596-633, (2016).