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Remember:

Regularity structure: Graded vector space T with a group of
linear operators acting on it. List of objects in our local
description.

p.2



Remember:

Regularity structure: Graded vector space T with a group of
linear operators acting on it. List of objects in our local
description.

Model: Maps an element in 7 € T and points x, y € R? to a
distribution Iy and a 'y, . Condition of decay around x for
My and bound on Iy , in terms of |x — y|.

p.2



Remember:

Regularity structure: Graded vector space T with a group of
linear operators acting on it. List of objects in our local
description.

Model: Maps an element in 7 € T and points x, y € R? to a
distribution Iy and a 'y, . Condition of decay around x for

My and bound on Iy , in terms of |x — y|.

Modelled distribution: D. Mapping f: R — T. Bound
[(X) = Ty F W) lm < [x =y =™
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Where are we?

Missing:
m Need reconstruction operator R.
m Need to define operations for modelled distributions:
« Multiplication.
« Integration against heat kernel.

m Need to build the right regularity structure for a given
model.
m Need to check that renormalised models converge.
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Reconstruction Theorem

T = (A, T, G) = regularity structure, (I1,I) = model & = min A.

For every ~+ > 0, there exists a unique, continuous linear map
R: D7 — C“ such that (locally uniformly)

|[(Rf = Mt () (Sem)| < 07 INI1 I Fllp, -

SJn = scaled testfunction.
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Reconstruction Theorem

T = (A, T, G) = regularity structure, (I1,I) = model & = min A.

For every ~+ > 0, there exists a unique, continuous linear map
R: D7 — C“ such that (locally uniformly)

[(Rf = N f(x)) (Sem)| < 711V 1]

D, -

SJn = scaled testfunction.

The condition v > 0 corresponds to the condition s + a > 0 in
the multiplicative inequality for u € BY, , and v € BS, .
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Proof of uniqueness

|(Rf — Ny f(x))(Sen)| S 67 .

m € D7, &, & two candidates for Rf. Set ¢ := & — &.
Aim:
(¢.4) =0  forall ) smooth.
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Aim:
(¢.4) =0  forall ) smooth.

W )5 = 1p *xns. Then s — ¢ and (€, vs) — (€, Ys)-
n

(€ vs) = [ €xns(x) v(x)ax
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Proof of uniqueness

|(Rf — Ny f(x))(Sin)| S 67 .

m € D7, &, & two candidates for Rf. Set & 1= & — &.
Aim:
(¢.4) =0  forall ) smooth.

m )5 = x5 Then ¢s — ¢ and (€, 1bs) — (€, ¥5).
n

(&, vs) = / & * ns(x) w(x)dx — 0.

<o
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Aim: Given f: RY — T construct Rf € D'(R").
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Proof of existence

Aim: Given f: R? — T construct Rf € D'(R").

m Approximate

Raf = Y (Mef(X), %) ©5-

Xe2="Z
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Proof of existence

Aim: Given f: R? — T construct Rf € D'(R").

m Approximate

Rof = > (Mef(x). 05) of.
Xe2="Z

m ) are Daubechies wavelets. These are rescalings of a
regular function ¢ (e.g. C'(RY) for r large) compactly
supported and such that for there exits ax

p(x) = > akp(2x — k).
kezd
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Proof of existence

Aim: Given f: R? — T construct Rf € D'(R").
m Approximate

Rof = > (Mef(x). 05) of.
Xe2="Z

m ) are Daubechies wavelets. These are rescalings of a
regular function ¢ (e.g. C'(RY) for r large) compactly
supported and such that for there exits ax

p(x) = > akp(2x — k).
kezd

m At every level n calculate R, 1f — Rpf. Definitions are
tailored to make this summable.
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Where are we?

Missing:
m Need to define operations for modelled distributions:
« Multiplication.
« Integration against heat kernel.
m Need to build the right regularity structure for a given
model.

m Need to check that renormalised models converge.
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How is a regularity structure for an SPDE built?

O = Ad — 3 ¢ CF)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)
® =K x(¢%+¢).

K = heat kernel, « = space-time convolution.

p.8



How is a regularity structure for an SPDE built?

O =Ad — &% +¢. C)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)
® =K x(¢%+¢).

K = heat kernel, « = space-time convolution.
Start Picard iteration:

p.8



How is a regularity structure for an SPDE built?

O =Ad — &% +¢. C)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)

® =K x(¢%+¢).
K = heat kernel, « = space-time convolution.

Start Picard iteration:
d)1 = K * f

Wy ={=},
Uo =0,
Fo=WoUlUy = 0.

p.8



How is a regularity structure for an SPDE built?

O =Ad — &% +¢. C)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)
® =K x(¢%+¢).

K = heat kernel, « = space-time convolution.
Start Picard iteration:
¢1 = K x f

Wy ={=},
Uy = {X*: ke N3, 7(2)},
Fir=WyUly ={XK: ke IN3, =, 7(2)}.

p.8



How is a regularity structure for an SPDE built?

O = Ad — 3 ¢ CF)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)

® =K x(¢%+¢).
K = heat kernel, « = space-time convolution.

Start Picard iteration:
®p = K * ((K*£)°+¢).
We = {=,2(2), ()3, Z(2)%, X*I(2), Xk1(2)?},
Uy = (X, 7(3)},
Fi =Wy Uly = {XK 2, 7(2)}.

p.8



How is a regularity structure for an SPDE built?

O =Ad — &% +¢. C)

Reinterpret as an integral equation (Duhamel’s principle, mild
solution, variation of constants)

® =K x(¢%+¢).
K = heat kernel, « = space-time convolution.

Start Picard iteration:
®p = K * ((K*£)°+¢).
We = {=,2(2), ()3, Z(2)%, X*I(2), Xk1(2)?},
U = (XK I(Z)} uZ(W2),
Fo=Wolllp = ....
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o4 ||

b =Ad— 3 ¢ CF)

Final set of symbols:
F = UpFn = {X 2, 2(2), 2(2)2, 2(2)3, Xk 1(2), X*1(2)?, .. }

Degree: For a symbol in 7 we define recursively

- 5
El=—5. Xi=Ikl, Z@OI=Il+2, |nml=|nllm|.

Example: | X% Z(Z(Z)X%)| = |ki| + |ko| +4 — 3.
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b =Ad— 3 ¢ CF)

Final set of symbols:

F = UpFn = {X 2, 2(2), 2(2)2, 2(2)3, Xk 1(2), X*1(2)?, .. }

Degree: For a symbol in 7 we define recursively
— 5
=l=-3, (X =1kl, Z(M =l +2,  |nmel =[]l .
Example: | X5 Z(Z(Z)Xk)| = |ki| + |ko| + 4 — 3.
Regularity structure:
T., = {vector space generated by the symbols with weight « }.

Subcriticality ensures that T, finite dimensional!
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How is a regularity structure for an SPDE built? KPZ

dth = 92h + (0xh)® + ¢, . (KP2)

Integral equation
& = K * ((0xh)® +¢€).

K = heat kernel, « = space-time convolution.
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How is a regularity structure for an SPDE built? KPZ

dth = 92h + (0xh)? + ¢, . (KP2)

Integral equation
® = K« ((0xh)? +€).

K = heat kernel, « = space-time convolution.
Start Picard iteration:

Dy = K x ((0xK + €)% +€).
Wa = {XK =, 74(2), 1 (2)?, T4 (=) X*},
Z/{1 - {XK/I(E)}v
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How is a regularity structure for an SPDE built? KPZ

dth = 92h + (0xh)? + ¢, . (KP2)

Integral equation
® = K« ((0xh)? +€).

K = heat kernel, « = space-time convolution.
Start Picard iteration:

®p = K * ((0xK % €)% +¢).
Wa = {XK =, 74(2), 1 (2)?, T4 (=) X*},
Up = {X*, Z(2)} UI(Wa),
Fo=WoUlo = ....



KPZ I

dth = 92h + (0xh)? + ¢, . (KP2)

Final set of symbols:
F = {Xka EI(E)I1 (E)Z1 (5)2711 (E)Xk/ - }

Degree: For a symbol in 7 we define recursively

_ 3
\:\:—57 \Xk\:\k\; |Zy(7)| = |7| + 1, |m7e| = |7 || .

Example: |Z{(Z(=X)Z(Z))| = |k| + 2.
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KPZ I

dth = 92h 4 (9xh)® + ¢, . (KPZ)

Final set of symbols:

F={XKZ,2(2), :(2), T4 ()2, T () XK, .. }

Degree: For a symbol in 7 we define recursively

3
= 5> \Xk\ =k, |Ti(D)=Irl+1, [nmel=|n]|r]|.
Example: |Z{(Z(=X)Z(Z))| = |k| + 2.
Regularity structure:
T., = {vector space generated by the symbols with weight « }.

Subcriticality ensures that T, finite dimensional!
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Which terms have to be constructed “by hand"?

VI(2),Z(2)2,2(2)%, XiZ(2), X Z(2)?, Z(Z)?Z((Z(2)?),
—— e e e~ — ———

o
{III
{

Terms of positive order can be dropped by reconstruction
theorem.

Terms with divergent constants: Z(2)?, Z(=)3, Z(Z)?Z(Z(Z)?),
I(Z)PT(Z(2)?).
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Action of the group

The definition of the group action is slightly tricky.
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Action of the group

The definition of the group action is slightly tricky.
m G acts on polynomials as before.

m G acts trivially on =, Z(Z), Z(2)?, Z(Z)% i.e. T= = = efc.

Terms with interaction of = and X as well as Z(7) with positive
order become non-trivial to describe.

Hopf-algebraic notation useful to capture the combinatorics.
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Summary

m Very degenerate stochastic PDE arise as universal scaling
limits in various models in statistical Physics.

p.14



Summary

m Very degenerate stochastic PDE arise as universal scaling
limits in various models in statistical Physics.

m Due to irregularity of the white noise often not clear how to
interpret non-linear terms.

p.14



Summary

m Very degenerate stochastic PDE arise as universal scaling
limits in various models in statistical Physics.

m Due to irregularity of the white noise often not clear how to
interpret non-linear terms.

m In subcritical (superrenormalisable) equations
approximations converge if a finite number of “infinities" is
removed.

p.14



Summary

m Very degenerate stochastic PDE arise as universal scaling
limits in various models in statistical Physics.

m Due to irregularity of the white noise often not clear how to
interpret non-linear terms.

m In subcritical (superrenormalisable) equations
approximations converge if a finite number of “infinities" is
removed.

m Regularity structures allow to separate efficiently the
(probabilistic) analysis of the “perturbative" theory and the
(deterministic) fixed point argument.
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