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Remember:

Regularity structure: Graded vector space T with a group of

linear operators acting on it. List of objects in our local

description.

Model: Maps an element in τ ∈ T and points x , y ∈ Rd to a

distribution Πxτ and a Γx ,y . Condition of decay around x for

Πxτ and bound on Γx ,y in terms of |x − y |.

Modelled distribution: Dγ . Mapping f : Rd → T. Bound

‖f (x)− Γx ,y f (y)‖m . |x − y |γ−m.
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Where are we?

F M

R

×× Cα(Td ) Dγ

·

F

R

× C

ξ
∈

×Cα(Td )

u0

∈

CαT

RΨ

SA

SC

Missing:

Need reconstruction operator R.
Need to define operations for modelled distributions:
∗ Multiplication.

∗ Integration against heat kernel.

Need to build the right regularity structure for a given

model.

Need to check that renormalised models converge. p.3
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Reconstruction Theorem

T = (A,T ,G) = regularity structure, (Π, Γ) = model α = min A.

For every γ > 0, there exists a unique, continuous linear map

R : Dγ → Cα such that (locally uniformly)

∣∣(Rf − Πx f (x)
)
(Sδxη)

∣∣ . δγ‖Π‖ |||f |||Dγ .

Sδxη = scaled testfunction.

The condition γ > 0 corresponds to the condition s + α > 0 in

the multiplicative inequality for u ∈ Bα∞,∞ and v ∈ Bs
∞,∞.

p.4



Reconstruction Theorem

T = (A,T ,G) = regularity structure, (Π, Γ) = model α = min A.

For every γ > 0, there exists a unique, continuous linear map

R : Dγ → Cα such that (locally uniformly)

∣∣(Rf − Πx f (x)
)
(Sδxη)

∣∣ . δγ‖Π‖ |||f |||Dγ .

Sδxη = scaled testfunction.

The condition γ > 0 corresponds to the condition s + α > 0 in

the multiplicative inequality for u ∈ Bα∞,∞ and v ∈ Bs
∞,∞.

p.4



Proof of uniqueness

∣∣(Rf − Πx f (x)
)
(Sδxη)

∣∣ . δγ .

f ∈ Dγ , ξ1, ξ2 two candidates for Rf . Set ξ := ξ1 − ξ2.

Aim:

〈ξ, ψ〉 = 0 for all ψ smooth.

ψδ = ψ ∗ ηδ. Then ψδ → ψ and 〈ξ, ψδ〉 → 〈ξ, ψδ〉.

〈ξ, ψδ〉 =

∫
ψ(x)dx

→ 0.
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Proof of existence

Aim: Given f : Rd → T construct Rf ∈ D′(Rn).

Approximate

Rnf =
∑

x∈2−nZ

〈Πx f (x), ϕn
x〉ϕn

x .

ϕn
x are Daubechies wavelets. These are rescalings of a

regular function ϕ (e.g. Cr (Rd ) for r large) compactly

supported and such that for there exits ak

ϕ(x) =
∑

k∈Zd

ak ϕ(2x − k).

At every level n calculate Rn+1f −Rnf . Definitions are

tailored to make this summable.
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How is a regularity structure for an SPDE built?

∂t Φ = ∆Φ− Φ3 + ξ . (Φ4
3)

Reinterpret as an integral equation (Duhamel’s principle, mild

solution, variation of constants)

Φ = K ∗ (Φ3 + ξ).

K = heat kernel, ∗ = space-time convolution.

Start Picard iteration:

.

= ,

= ,

= .
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Φ4
3 II

∂t Φ = ∆Φ− Φ3 + ξ . (Φ4
3)

Final set of symbols:

F := ∪nFn = {X k ,Ξ, I(Ξ), I(Ξ)2, I(Ξ)3,X kI(Ξ),X kI(Ξ)2, . . .}

Degree: For a symbol in F we define recursively

|Ξ| = −5
2
, |X k | = |k | , |I(τ)| = |τ |+ 2 , |τ1τ2| = |τ1| |τ2| .

Example: |X k1I(I(Ξ)X k2)| = |k1|+ |k2|+ 4− 5
2 .

Regularity structure:

Tα = {vector space generated by the symbols with weight α }.
Subcriticality ensures that Tα finite dimensional!
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How is a regularity structure for an SPDE built? KPZ

∂th = ∂2
x h + (∂xh)2 + ξ, . (KPZ)

Integral equation

Φ = K ∗ ((∂xh)2 + ξ).

K = heat kernel, ∗ = space-time convolution.

Start Picard iteration:

.

= ,

= ,

= .
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KPZ II

∂th = ∂2
x h + (∂xh)2 + ξ, . (KPZ)

Final set of symbols:

F = {X k ,Ξ, I(Ξ), I1(Ξ), I1(Ξ)2, I1(Ξ)X k , . . .}

Degree: For a symbol in F we define recursively

|Ξ| = −3
2
, |X k | = |k | , |I1(τ)| = |τ |+ 1 , |τ1τ2| = |τ1| |τ2| .

Example: |I1(I(ΞX k )I(Ξ))| = |k |+ 2.
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Which terms have to be constructed “by hand"?

Φ4
3:

F =

{
X k︸︷︷︸
|k |

, Ξ︸︷︷︸
− 5

2

, I(Ξ)︸ ︷︷ ︸
− 1

2

, I(Ξ)2︸ ︷︷ ︸
−1

, I(Ξ)3︸ ︷︷ ︸
− 3

2

,XiI(Ξ)︸ ︷︷ ︸
1
2

,XiI(Ξ)2︸ ︷︷ ︸
0

, I(Ξ)2I((I(Ξ)2)︸ ︷︷ ︸
0

,

I(Ξ)2I((I(Ξ)3)︸ ︷︷ ︸
− 1

2

, I(Ξ)I((I(Ξ)3)︸ ︷︷ ︸
0

}

Terms of positive order can be dropped by reconstruction

theorem.

Terms with divergent constants: I(Ξ)2, I(Ξ)3, I(Ξ)2I(I(Ξ)2),

I(Ξ)2I(I(Ξ)3).
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Action of the group

The definition of the group action is slightly tricky.

G acts on polynomials as before.

G acts trivially on Ξ, I(Ξ), I(Ξ)2, I(Ξ)3 i.e. ΓΞ = Ξ etc.

Terms with interaction of Ξ and X as well as I(τ) with positive

order become non-trivial to describe.

Hopf-algebraic notation useful to capture the combinatorics.
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Summary

Very degenerate stochastic PDE arise as universal scaling

limits in various models in statistical Physics.

Due to irregularity of the white noise often not clear how to

interpret non-linear terms.

In subcritical (superrenormalisable) equations

approximations converge if a finite number of “infinities" is

removed.

Regularity structures allow to separate efficiently the

(probabilistic) analysis of the “perturbative" theory and the

(deterministic) fixed point argument.
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