Non-linear SPDEs, controlled distributions and renormalisation Part II

Hendrik Weber

Mathematics Institute University of Warwick

Potsdam, 09.11.2013

Regularity structure: Graded vector space \mathbb{T} with a group of linear operators acting on it. List of objects in our local description.

Regularity structure: Graded vector space \mathbb{T} with a group of linear operators acting on it. List of objects in our local description.

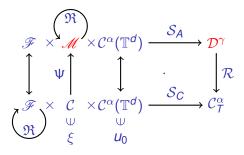
Model: Maps an element in $\tau \in \mathbb{T}$ and points $x, y \in \mathbb{R}^d$ to a distribution $\Pi_x \tau$ and a $\Gamma_{x,y}$. Condition of decay around x for $\Pi_x \tau$ and bound on $\Gamma_{x,y}$ in terms of |x - y|.

Regularity structure: Graded vector space \mathbb{T} with a group of linear operators acting on it. List of objects in our local description.

Model: Maps an element in $\tau \in \mathbb{T}$ and points $x, y \in \mathbb{R}^d$ to a distribution $\Pi_x \tau$ and a $\Gamma_{x,y}$. Condition of decay around x for $\Pi_x \tau$ and bound on $\Gamma_{x,y}$ in terms of |x - y|.

Modelled distribution: \mathcal{D}^{γ} . Mapping $f : \mathbb{R}^d \to \mathbb{T}$. Bound $\|f(x) - \Gamma_{x,y}f(y)\|_m \lesssim |x - y|^{\gamma - m}$.

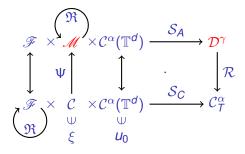
Where are we?



Missing:

- Need reconstruction operator \mathcal{R} .
- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.
- Need to check that renormalised models converge.

Where are we?



Missing:

- **Need** reconstruction operator \mathcal{R} .
- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.
- Need to check that renormalised models converge.

 $\mathbb{T} = (A, T, G) = \text{regularity structure, } (\Pi, \Gamma) = \text{model } \alpha = \min A.$

For every $\gamma > 0$, there exists a unique, continuous linear map $\mathcal{R} : \mathcal{D}^{\gamma} \to \mathcal{C}^{\alpha}$ such that (locally uniformly)

 $|(\mathcal{R}f - \Pi_{x}f(x))(\mathcal{S}_{x}^{\delta}\eta)| \lesssim \delta^{\gamma} \|\Pi\| \|f\|_{\mathcal{D}_{\gamma}}.$

 $S_x^{\delta}\eta =$ scaled testfunction.

 $\mathbb{T} = (A, T, G) = \text{regularity structure, } (\Pi, \Gamma) = \text{model } \alpha = \min A.$

For every $\gamma > 0$, there exists a unique, continuous linear map $\mathcal{R} : \mathcal{D}^{\gamma} \to \mathcal{C}^{\alpha}$ such that (locally uniformly)

 $|(\mathcal{R}f - \Pi_{x}f(x))(\mathcal{S}_{x}^{\delta}\eta)| \lesssim \delta^{\gamma} \|\Pi\| \|f\|_{\mathcal{D}_{\gamma}}.$

 $S_x^{\delta}\eta =$ scaled testfunction.

The condition $\gamma > 0$ corresponds to the condition $s + \alpha > 0$ in the multiplicative inequality for $u \in \mathcal{B}_{\infty,\infty}^{\alpha}$ and $v \in \mathcal{B}_{\infty,\infty}^{s}$.

$$\left| (\mathcal{R}f - {\sf \Pi}_{\sf X}f({\sf X}))(\mathcal{S}^\delta_{\sf X}\eta)
ight| \lesssim \delta^\gamma \; .$$

■ $f \in D^{\gamma}$, ξ_1, ξ_2 two candidates for $\mathcal{R}f$. Set $\xi := \xi_1 - \xi_2$. Aim:

 $\langle \xi, \psi \rangle = \mathbf{0}$ for all ψ smooth.

$$\left| (\mathcal{R}f - {\sf \Pi}_{\sf X}f({\sf X}))(\mathcal{S}^\delta_{\sf X}\eta)
ight| \lesssim \delta^\gamma \; .$$

■ $f \in D^{\gamma}$, ξ_1, ξ_2 two candidates for $\mathcal{R}f$. Set $\xi := \xi_1 - \xi_2$. Aim:

 $\langle \xi, \psi \rangle = \mathbf{0}$ for all ψ smooth.

• $\psi_{\delta} = \psi * \eta_{\delta}$. Then $\psi_{\delta} \to \psi$ and $\langle \xi, \psi_{\delta} \rangle \to \langle \xi, \psi_{\delta} \rangle$.

$$\left| (\mathcal{R} f - {\sf \Pi}_{{\sf X}} f({\sf X})) (\mathcal{S}^{\delta}_{{\sf X}} \eta)
ight| \lesssim \delta^{\gamma} \; .$$

■ $f \in D^{\gamma}$, ξ_1, ξ_2 two candidates for $\mathcal{R}f$. Set $\xi := \xi_1 - \xi_2$. Aim:

 $\langle \xi, \psi \rangle = \mathbf{0}$ for all ψ smooth.

• $\psi_{\delta} = \psi * \eta_{\delta}$. Then $\psi_{\delta} \to \psi$ and $\langle \xi, \psi_{\delta} \rangle \to \langle \xi, \psi_{\delta} \rangle$.

$$\langle \xi, \psi_\delta
angle = \int \, \xi * \eta_\delta({m x}) \, \psi({m x}) d{m x}$$

$$\left| (\mathcal{R}f - {\sf \Pi}_{\sf X}f({\sf X}))(\mathcal{S}^\delta_{\sf X}\eta)
ight| \lesssim \delta^\gamma \; .$$

■ $f \in D^{\gamma}$, ξ_1, ξ_2 two candidates for $\mathcal{R}f$. Set $\xi := \xi_1 - \xi_2$. Aim:

 $\langle \xi, \psi \rangle = \mathbf{0}$ for all ψ smooth.

• $\psi_{\delta} = \psi * \eta_{\delta}$. Then $\psi_{\delta} \to \psi$ and $\langle \xi, \psi_{\delta} \rangle \to \langle \xi, \psi_{\delta} \rangle$.

$$\langle \xi, \psi_{\delta}
angle = \int \underbrace{\xi * \eta_{\delta}(x)}_{\lesssim \delta^{\gamma}} \psi(x) dx
ightarrow 0.$$

Aim: Given $f : \mathbb{R}^d \to \mathbb{T}$ construct $\mathcal{R}f \in \mathcal{D}'(\mathbb{R}^n)$.

Aim: Given $f : \mathbb{R}^d \to \mathbb{T}$ construct $\mathcal{R}f \in \mathcal{D}'(\mathbb{R}^n)$.

Approximate

$$\mathcal{R}_n f = \sum_{x \in 2^{-n} \mathbb{Z}} \langle \Pi_x f(x), \varphi_x^n \rangle \varphi_x^n.$$

Aim: Given $f : \mathbb{R}^d \to \mathbb{T}$ construct $\mathcal{R}f \in \mathcal{D}'(\mathbb{R}^n)$.

Approximate

$$\mathcal{R}_n f = \sum_{x \in 2^{-n} \mathbb{Z}} \langle \Pi_x f(x), \varphi_x^n \rangle \varphi_x^n.$$

φⁿ_x are Daubechies wavelets. These are rescalings of a regular function *φ* (e.g. *C^r*(ℝ^d) for *r* large) compactly supported and such that for there exits *a_k*

$$\varphi(x) = \sum_{k \in \mathbb{Z}^d} a_k \varphi(2x - k).$$

Aim: Given $f : \mathbb{R}^d \to \mathbb{T}$ construct $\mathcal{R}f \in \mathcal{D}'(\mathbb{R}^n)$.

Approximate

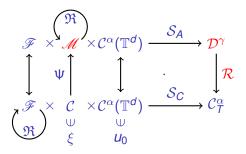
$$\mathcal{R}_n f = \sum_{x \in 2^{-n}\mathbb{Z}} \langle \Pi_x f(x), \varphi_x^n \rangle \varphi_x^n.$$

φⁿ_x are Daubechies wavelets. These are rescalings of a regular function *φ* (e.g. *C^r*(ℝ^d) for *r* large) compactly supported and such that for there exits *a_k*

$$\varphi(x) = \sum_{k \in \mathbb{Z}^d} a_k \varphi(2x - k).$$

At every level *n* calculate $\mathcal{R}_{n+1}f - \mathcal{R}_nf$. Definitions are tailored to make this summable.

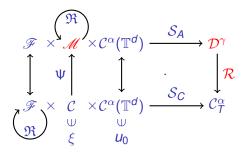
Where are we?



Missing:

- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.
- Need to check that renormalised models converge.

Where are we?



Missing:

- Need to define operations for modelled distributions:
 - Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.
- Need to check that renormalised models converge.

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution.

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution. Start Picard iteration:

 $\Phi_0 = 0.$ $\mathcal{W}_0 = \emptyset,$ $\mathcal{U}_0 = \emptyset,$ $\mathcal{F}_0 = \mathcal{W}_0 \cup \mathcal{U}_0 = \emptyset.$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution. Start Picard iteration:

 $\Phi_1 = K * \xi.$ $\mathcal{W}_1 = \{\Xi\},$ $\mathcal{U}_0 = \emptyset,$ $\mathcal{F}_0 = \mathcal{W}_0 \cup \mathcal{U}_0 = \emptyset.$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution. Start Picard iteration:

 $\Phi_1 = K * \xi.$

$$\begin{split} \mathcal{W}_1 &= \{\Xi\}, \\ \mathcal{U}_1 &= \{X^k : k \in \mathbb{N}_0^3, \mathcal{I}(\Xi)\}, \\ \mathcal{F}_1 &= \mathcal{W}_1 \cup \mathcal{U}_1 = \{X^k : k \in \mathbb{N}_0^3, \Xi, \mathcal{I}(\Xi)\}. \end{split}$$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution. Start Picard iteration:

$$\Phi_2 = K * ((K * \xi)^3 + \xi).$$

$$\begin{split} \mathcal{W}_2 &= \{\Xi, \mathcal{I}(\Xi), \mathcal{I}(\Xi)^2, \mathcal{I}(\Xi)^3, X^k \mathcal{I}(\Xi), X^k \mathcal{I}(\Xi)^2\}, \\ \mathcal{U}_1 &= \{X^k, \mathcal{I}(\Xi)\}, \\ \mathcal{F}_1 &= \mathcal{W}_1 \cup \mathcal{U}_1 = \{X^k, \Xi, \mathcal{I}(\Xi)\}. \end{split}$$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Reinterpret as an integral equation (Duhamel's principle, mild solution, variation of constants)

 $\Phi = K * (\Phi^3 + \xi).$

K = heat kernel, * = space-time convolution. Start Picard iteration:

$$\Phi_2 = K * ((K * \xi)^3 + \xi).$$

$$\begin{split} \mathcal{W}_2 &= \{\Xi, \mathcal{I}(\Xi), \mathcal{I}(\Xi)^2, \mathcal{I}(\Xi)^3, X^k \mathcal{I}(\Xi), X^k \mathcal{I}(\Xi)^2\}, \\ \mathcal{U}_2 &= \{X^k, \mathcal{I}(\Xi)\} \cup \mathcal{I}(\mathcal{W}_2), \\ \mathcal{F}_2 &= \mathcal{W}_2 \cup \mathcal{U}_2 = \dots. \end{split}$$

 $\Phi_3^4 \parallel$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi$$
 . (Φ_3^4)

Final set of symbols:

 $\mathcal{F} := \cup_n \mathcal{F}_n = \{ X^k, \Xi, \mathcal{I}(\Xi), \mathcal{I}(\Xi)^2, \mathcal{I}(\Xi)^3, X^k \mathcal{I}(\Xi), X^k \mathcal{I}(\Xi)^2, \ldots \}$

Degree: For a symbol in \mathcal{F} we define recursively $|\Xi| = -\frac{5}{2}$, $|X^k| = |k|$, $|\mathcal{I}(\tau)| = |\tau| + 2$, $|\tau_1 \tau_2| = |\tau_1| |\tau_2|$.

Example: $|X^{k_1}\mathcal{I}(\mathcal{I}(\Xi)X^{k_2})| = |k_1| + |k_2| + 4 - \frac{5}{2}$.

 $\Phi_3^4 \parallel$

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi \;.$$
 (Φ_3^4)

Final set of symbols:

 $\mathcal{F} := \cup_n \mathcal{F}_n = \{ X^k, \Xi, \mathcal{I}(\Xi), \mathcal{I}(\Xi)^2, \mathcal{I}(\Xi)^3, X^k \mathcal{I}(\Xi), X^k \mathcal{I}(\Xi)^2, \ldots \}$

Degree: For a symbol in \mathcal{F} we define recursively $|\Xi| = -\frac{5}{2}$, $|X^k| = |k|$, $|\mathcal{I}(\tau)| = |\tau| + 2$, $|\tau_1 \tau_2| = |\tau_1| |\tau_2|$.

Example: $|X^{k_1}\mathcal{I}(\mathcal{I}(\Xi)X^{k_2})| = |k_1| + |k_2| + 4 - \frac{5}{2}$.

Regularity structure:

 $T_{\alpha} = \{$ vector space generated by the symbols with weight $\alpha \}$. Subcriticality ensures that T_{α} finite dimensional!

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

Start Picard iteration:

$$\begin{split} \Phi_0 &= 0. \end{split}$$
 $\mathcal{W}_0 &= \emptyset, \\ \mathcal{U}_0 &= \emptyset, \\ \mathcal{F}_0 &= \mathcal{W}_0 \cup \mathcal{U}_0 = \emptyset. \end{split}$

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

Start Picard iteration:

 $\Phi_1 = K * \xi.$ $\mathcal{W}_1 = \{\Xi\},$ $\mathcal{U}_0 = \emptyset,$ $\mathcal{F}_0 = \mathcal{W}_0 \cup \mathcal{U}_0 = \emptyset.$

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

Start Picard iteration:

$$\Phi_1 = K * \xi.$$

$$\begin{split} \mathcal{W}_1 &= \{\Xi\}, \\ \mathcal{U}_1 &= \{X^k, \mathcal{I}(\Xi)\}, \\ \mathcal{F}_1 &= \mathcal{W}_1 \cup \mathcal{U}_1 = \{X^k, \Xi, \mathcal{I}(\Xi)\}. \end{split}$$

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

Start Picard iteration:

$$\Phi_2 = K * ((\partial_X K * \xi)^2 + \xi).$$
$$\mathcal{W}_2 = \{X^k, \Xi, \mathcal{I}_1(\Xi), \mathcal{I}_1(\Xi)^2, \mathcal{I}_1(\Xi)X^k\}.$$
$$\mathcal{U}_1 = \{X^k, \mathcal{I}(\Xi)\},$$
$$\mathcal{F}_1 = \mathcal{W}_1 \cup \mathcal{U}_1 = \{X^k, \Xi, \mathcal{I}(\Xi)\}.$$

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Integral equation

 $\Phi = K * ((\partial_x h)^2 + \xi).$

K = heat kernel, * = space-time convolution.

Start Picard iteration:

$$\Phi_2 = K * ((\partial_x K * \xi)^2 + \xi).$$
$$\mathcal{W}_2 = \{X^k, \Xi, \mathcal{I}_1(\Xi), \mathcal{I}_1(\Xi)^2, \mathcal{I}_1(\Xi)X^k\},$$
$$\mathcal{U}_2 = \{X^k, \mathcal{I}(\Xi)\} \cup \mathcal{I}(\mathcal{W}_2),$$
$$\mathcal{F}_2 = \mathcal{W}_2 \cup \mathcal{U}_2 = \ldots.$$

KPZ II

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Final set of symbols:

 $\mathcal{F} = \{X^k, \Xi, \mathcal{I}(\Xi), \mathcal{I}_1(\Xi), \mathcal{I}_1(\Xi)^2, \mathcal{I}_1(\Xi)X^k, \ldots\}$

Degree: For a symbol in \mathcal{F} we define recursively $|\Xi| = -\frac{3}{2}$, $|X^k| = |k|$, $|\mathcal{I}_1(\tau)| = |\tau| + 1$, $|\tau_1\tau_2| = |\tau_1| |\tau_2|$.

Example: $|\mathcal{I}_1(\mathcal{I}(\Xi X^k)\mathcal{I}(\Xi))| = |k| + 2.$

KPZ II

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \xi,.$$
 (KPZ)

Final set of symbols:

 $\mathcal{F} = \{X^k, \Xi, \mathcal{I}(\Xi), \mathcal{I}_1(\Xi), \mathcal{I}_1(\Xi)^2, \mathcal{I}_1(\Xi)X^k, \ldots\}$

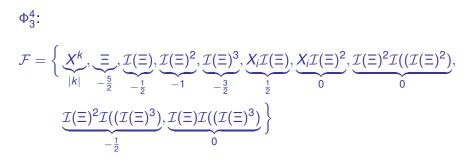
Degree: For a symbol in \mathcal{F} we define recursively $|\Xi| = -\frac{3}{2}$, $|X^k| = |k|$, $|\mathcal{I}_1(\tau)| = |\tau| + 1$, $|\tau_1\tau_2| = |\tau_1| |\tau_2|$.

Example: $|\mathcal{I}_1(\mathcal{I}(\Xi X^k)\mathcal{I}(\Xi))| = |k| + 2.$

Regularity structure:

 $T_{\alpha} = \{$ vector space generated by the symbols with weight $\alpha \}$. Subcriticality ensures that T_{α} finite dimensional!

Which terms have to be constructed "by hand"?



Terms of positive order can be dropped by reconstruction theorem.

Terms with divergent constants: $\mathcal{I}(\Xi)^2$, $\mathcal{I}(\Xi)^3$, $\mathcal{I}(\Xi)^2 \mathcal{I}(\mathcal{I}(\Xi)^2)$, $\mathcal{I}(\Xi)^2 \mathcal{I}(\mathcal{I}(\Xi)^3)$.

■ *G* acts on polynomials as before.

- *G* acts on polynomials as before.
- *G* acts trivially on Ξ , $\mathcal{I}(\Xi)$, $\mathcal{I}(\Xi)^2$, $\mathcal{I}(\Xi)^3$ i.e. $\Gamma \Xi = \Xi$ etc.

- *G* acts on polynomials as before.
- *G* acts trivially on Ξ , $\mathcal{I}(\Xi)$, $\mathcal{I}(\Xi)^2$, $\mathcal{I}(\Xi)^3$ i.e. $\Gamma \Xi = \Xi$ etc.

Terms with interaction of Ξ and X as well as $\mathcal{I}(\tau)$ with positive order become non-trivial to describe.

- *G* acts on polynomials as before.
- *G* acts trivially on Ξ , $\mathcal{I}(\Xi)$, $\mathcal{I}(\Xi)^2$, $\mathcal{I}(\Xi)^3$ i.e. $\Gamma \Xi = \Xi$ etc.

Terms with interaction of Ξ and *X* as well as $\mathcal{I}(\tau)$ with positive order become non-trivial to describe.

Hopf-algebraic notation useful to capture the combinatorics.

 Very degenerate stochastic PDE arise as universal scaling limits in various models in statistical Physics.

- Very degenerate stochastic PDE arise as universal scaling limits in various models in statistical Physics.
- Due to irregularity of the white noise often not clear how to interpret non-linear terms.

- Very degenerate stochastic PDE arise as universal scaling limits in various models in statistical Physics.
- Due to irregularity of the white noise often not clear how to interpret non-linear terms.
- In subcritical (superrenormalisable) equations approximations converge if a finite number of "infinities" is removed.

- Very degenerate stochastic PDE arise as universal scaling limits in various models in statistical Physics.
- Due to irregularity of the white noise often not clear how to interpret non-linear terms.
- In subcritical (superrenormalisable) equations approximations converge if a finite number of "infinities" is removed.
- Regularity structures allow to separate efficiently the (probabilistic) analysis of the "perturbative" theory and the (deterministic) fixed point argument.