Non-linear SPDEs, modelled distributions and renormalisation

Part I

Hendrik Weber

Mathematics Institute
University of Warwick
Potsdam, 08.11.2013

Introduction

Based on: M.Hairer "A theory of regularity structures" arXiv:1303.5113.

Introduction

Aim: Construct solutions for very singular SPDEs.
Examples:

$$
\begin{array}{ll}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\xi, & d=1 \\
\partial_{t} u=\Delta u+f_{i j}(u) \partial_{i} u \partial_{j} u+g(u) \eta & d=2 \\
\partial_{t} \Phi=\Delta \Phi-\Phi^{3}+\xi & d=3 . \tag{3}
\end{array}
$$

$\xi=$ space-time white noise, $\eta=$ spatial white noise.
(KPZ) model for growth of $1+1$-dimensional surfaces. (PAM) diffusion in a random environment. (Φ^{4}) model for ferro magnet near its critical temperature.

Introduction

Aim: Construct solutions for very singular SPDEs.
Examples:

$$
\begin{array}{ll}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\xi, & d=1 \\
\partial_{t} u=\Delta u+f_{i j}(u) \partial_{i} u \partial_{j} u+g(u) \eta & d=2 \\
\partial_{t} \Phi=\Delta \Phi-\Phi^{3}+\xi & d=3 . \tag{3}
\end{array}
$$

$\xi=$ space-time white noise, $\eta=$ spatial white noise.

Difficulty: Solution is too irregular to make sense of some products. $(u, v) \mapsto u v$ for $u \in \mathcal{B}_{\infty, \infty}^{\alpha}, v \in \mathcal{B}_{\infty, \infty}^{s}$ only well defined if $s+\alpha>0$.

Relation to QFT

In QFT Φ_{3}^{4} is measure μ on $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ which formally satisfies

$$
\mu(d \phi)=\frac{1}{Z} \exp (-\mathcal{S}(\phi)) \prod_{x \in \mathbb{R}^{3}} d \phi_{x}
$$

where $\mathcal{S}(\phi)=\int|\nabla \phi|^{2}+\phi^{4} d x$.

Relation to QFT

In QFT Φ_{3}^{4} is measure μ on $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ which formally satisfies

$$
\mu(d \phi)=\frac{1}{Z} \exp (-\mathcal{S}(\phi)) \prod_{x \in \mathbb{R}^{3}} d \phi_{x}
$$

where $\mathcal{S}(\phi)=\int|\nabla \phi|^{2}+\phi^{4} d x$.
On \mathbb{R}^{d} under very general assumptions on $\mathcal{S}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the measure

$$
\mu=\frac{1}{Z} \exp (-\mathcal{S}(x)) d x
$$

is the unique invariant measure of the stochastic differential equation

$$
d x(t)=-\nabla \mathcal{S}(x(t)) d t+\sqrt{2} d W(t)
$$

Relation to QFT

In QFT Φ_{3}^{4} is measure μ on $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ which formally satisfies

$$
\mu(d \phi)=\frac{1}{Z} \exp (-\mathcal{S}(\phi)) \prod_{x \in \mathbb{R}^{3}} d \phi_{x}
$$

where $\mathcal{S}(\phi)=\int|\nabla \phi|^{2}+\phi^{4} d x$.
SPDE can formally be rewritten

$$
\begin{aligned}
\partial_{t} \Phi & =\Delta \Phi-\Phi^{3}+\xi \\
& =-\frac{\delta \mathcal{S}(\phi)}{\delta \phi}+\sqrt{2} d W
\end{aligned}
$$

Relation to QFT

In QFT Φ_{3}^{4} is measure μ on $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ which formally satisfies

$$
\mu(d \phi)=\frac{1}{Z} \exp (-\mathcal{S}(\phi)) \prod_{x \in \mathbb{R}^{3}} d \phi_{x}
$$

where $\mathcal{S}(\phi)=\int|\nabla \phi|^{2}+\phi^{4} d x$.
SPDE can formally be rewritten

$$
\begin{aligned}
\partial_{t} \Phi & =\Delta \Phi-\Phi^{3}+\xi \\
& =-\frac{\delta \mathcal{S}(\phi)}{\delta \phi}+\sqrt{2} d W
\end{aligned}
$$

Rigorous (at least in 1 and 2 dimensions in finite volume) by finite dimensional approximations.

Scope of the theory

Equations of the form

$$
\mathcal{L} u=F(u, \xi),
$$

\mathcal{L} smoothing linear operator. F non-linear function, ξ noise.

Scope of the theory

Equations of the form

$$
\mathcal{L} u=F(u, \xi),
$$

\mathcal{L} smoothing linear operator. F non-linear function, ξ noise.
Subcriticality: On small scales the non-linear term is lower order.
Example (KPZ): scaling $x \mapsto \varepsilon x, t \mapsto \varepsilon^{2} t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$
\partial_{t} \tilde{h}=\partial_{x}^{2} \tilde{h}+\varepsilon^{1 / 2}\left(\partial_{x} \tilde{h}\right)^{2}+\tilde{\xi}
$$

Scope of the theory

Equations of the form

$$
\mathcal{L} u=F(u, \xi),
$$

\mathcal{L} smoothing linear operator. F non-linear function, ξ noise.
Subcriticality: On small scales the non-linear term is lower order.
Example (KPZ): scaling $x \mapsto \varepsilon x, t \mapsto \varepsilon^{2} t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$
\partial_{t} \tilde{h}=\partial_{x}^{2} \tilde{h}+\varepsilon^{1 / 2}\left(\partial_{x} \tilde{h}\right)^{2}+\tilde{\xi}
$$

Note: Sub-criticality corresponds to superrenormalisable theories.

Scope of the theory

Equations of the form

$$
\mathcal{L} u=F(u, \xi),
$$

\mathcal{L} smoothing linear operator. F non-linear function, ξ noise.
Subcriticality: On small scales the non-linear term is lower order.
Example (KPZ): scaling $x \mapsto \varepsilon x, t \mapsto \varepsilon^{2} t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$
\partial_{t} \tilde{h}=\partial_{x}^{2} \tilde{h}+\varepsilon^{1 / 2}\left(\partial_{x} \tilde{h}\right)^{2}+\tilde{\xi}
$$

Note: Different from 1/3; 2/3;1-scaling. This is interesting on large scales.

Type of solution

Naive approach: Solve $\mathcal{L} u_{\varepsilon}=F\left(u_{\varepsilon}, \xi_{\varepsilon}\right)$ for $\xi_{\varepsilon}=$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \rightarrow 0$.
Equations need to be renormalised.

Type of solution

Naive approach: Solve $\mathcal{L} u_{\varepsilon}=F\left(u_{\varepsilon}, \xi_{\varepsilon}\right)$ for $\xi_{\varepsilon}=$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \rightarrow 0$.
Equations need to be renormalised.
Examples:

$$
\begin{aligned}
\partial_{t} h_{\varepsilon} & =\partial_{x}^{2} h_{\varepsilon}+\left(\left(\partial_{x} h_{\varepsilon}\right)^{2}-C_{\varepsilon}\right)+\xi_{\varepsilon} \\
\partial_{t} u_{\varepsilon} & =\Delta u_{\varepsilon}+f_{i j}\left(u_{\varepsilon}\right)\left(\partial_{i} u_{\varepsilon} \partial_{j} u_{\varepsilon}-C_{\varepsilon} \delta_{i, j}\right)+g\left(u_{\varepsilon}\right)\left(\eta_{\varepsilon}-\hat{C}_{\varepsilon} g^{\prime}\left(u_{\varepsilon}\right)\right) \\
\partial_{t} \Phi_{\varepsilon} & =\Delta \Phi_{\varepsilon}-\left(\Phi_{\varepsilon}^{3}-C_{\varepsilon} \Phi_{\varepsilon}\right)+\xi_{\varepsilon},
\end{aligned}
$$

Main result: There are choices of $C_{\varepsilon}, \hat{C}_{\varepsilon}$ such that solutions converge to limit which is independent of choice of mollifier.

Type of solution

Naive approach: Solve $\mathcal{L} u_{\varepsilon}=F\left(u_{\varepsilon}, \xi_{\varepsilon}\right)$ for $\xi_{\varepsilon}=$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \rightarrow 0$.
Equations need to be renormalised.
Examples:

$$
\begin{aligned}
\partial_{t} h_{\varepsilon} & =\partial_{x}^{2} h_{\varepsilon}+\left(\left(\partial_{x} h_{\varepsilon}\right)^{2}-C_{\varepsilon}\right)+\xi_{\varepsilon} \\
\partial_{t} u_{\varepsilon} & =\Delta u_{\varepsilon}+f_{i j}\left(u_{\varepsilon}\right)\left(\partial_{i} u_{\varepsilon} \partial_{j} u_{\varepsilon}-C_{\varepsilon} \delta_{i, j}\right)+g\left(u_{\varepsilon}\right)\left(\eta_{\varepsilon}-\hat{C}_{\varepsilon} g^{\prime}\left(u_{\varepsilon}\right)\right) \\
\partial_{t} \Phi_{\varepsilon} & =\Delta \Phi_{\varepsilon}-\left(\Phi_{\varepsilon}^{3}-C_{\varepsilon} \Phi_{\varepsilon}\right)+\xi_{\varepsilon},
\end{aligned}
$$

Main result: There are choices of $C_{\varepsilon}, \hat{C}_{\varepsilon}$ such that solutions converge to limit which is independent of choice of mollifier.

Construction gives detailed description of local structure of solutions, regularity, approximations.

Schematic construction

$\mathscr{F}=$ " $\{$ right hand sides $\}$ ",
$\mathscr{M}="\{$ Models $\}$ ",
$\mathcal{D}_{T}^{\gamma, \eta}="\{$ modelled distributions $\}$ ",
$\mathcal{R}=$ "Reconstruction operator", $\Re=$ "Renormalisation group."

Canonical regularity structure I

Canonical regularity structure:

■ $\hat{T}=\bigoplus_{\alpha \in \mathbb{N}_{0}} T_{\alpha}=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
where $T_{\alpha}=\{$ homogeneous polynomials of degree $\alpha\}$.
$\square \hat{G}=\mathbb{R}^{d}$ acts on \hat{T} by translation. For $h \in \mathbb{R}^{d}$ define

$$
\Gamma_{h} P(X)=P(X-h)
$$

For $a \in T_{\alpha}$ we have $\Gamma_{h} a-a \in \oplus_{\beta<\alpha} T_{\beta}$.

Canonical regularity structure I

Canonical regularity structure:

■ $\hat{T}=\bigoplus_{\alpha \in \mathbb{N}_{0}} T_{\alpha}=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
where $T_{\alpha}=\{$ homogeneous polynomials of degree $\alpha\}$.
$\square \hat{G}=\mathbb{R}^{d}$ acts on \hat{T} by translation. For $h \in \mathbb{R}^{d}$ define

$$
\Gamma_{h} P(X)=P(X-h)
$$

For $a \in T_{\alpha}$ we have $\Gamma_{h} a-a \in \oplus_{\beta<\alpha} T_{\beta}$.
Canonical model: For $\tau \in T$ and $x \in \mathbb{R}^{d}$ set

$$
\Pi_{x} \tau(y)=\sum_{\alpha \geq 0} \tau_{\alpha}(y-x)^{\alpha}
$$

Canonical regularity structure I

Canonical regularity structure:

■ $\hat{T}=\bigoplus_{\alpha \in \mathbb{N}_{0}} T_{\alpha}=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
where $T_{\alpha}=\{$ homogeneous polynomials of degree $\alpha\}$.
■ $\hat{G}=\mathbb{R}^{d}$ acts on \hat{T} by translation. For $h \in \mathbb{R}^{d}$ define

$$
\Gamma_{h} P(X)=P(X-h)
$$

For $a \in T_{\alpha}$ we have $\Gamma_{h} a-a \in \oplus_{\beta<\alpha} T_{\beta}$.
Canonical model: For $\tau \in T$ and $x \in \mathbb{R}^{d}$ set

$$
\Pi_{x} \tau(y)=\sum_{\alpha \geq 0} \tau_{\alpha}(y-x)^{\alpha}
$$

Clearly $\Pi_{y} \tau(z)=\Gamma_{y-x} \Pi_{x}(z)$ and for $\tau \in T_{\alpha}$ we have
$\left|\Pi_{x} \tau(y)\right| \lesssim|\tau||y-x|^{\alpha}$.

Canonical regularity structure II

Description of functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth.
Then f can be "lifted" to a function $F: \mathbb{R}^{d} \rightarrow T$

$$
F_{\alpha}(x):=\sum_{|k|=\alpha} \frac{1}{k!} \partial^{k} f(x) X^{k} \quad \text { for } \alpha \leq n
$$

Characterisation of Hölder spaces: $f \in \mathcal{C}^{\gamma}\left(\mathbb{R}^{d}\right) \gamma \notin \mathbb{N}$ if and only if for $\alpha<\gamma$ (locally uniformly around x)

$$
\left|F_{\alpha}(y)-\left(\Gamma_{y-x} F\right)_{\alpha}(x)\right| \lesssim|y-x|^{\gamma-\alpha}
$$

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X:[0,1] \rightarrow \mathbb{R}^{d}$ (say in \mathcal{C}^{γ} for $0<\gamma<1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y:[0,1] \rightarrow \mathbb{R}^{d}$ if "it looks like X on small scales".

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X:[0,1] \rightarrow \mathbb{R}^{d}$ (say in \mathcal{C}^{γ} for $0<\gamma<1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y:[0,1] \rightarrow \mathbb{R}^{d}$ if "it looks like X on small scales".

Definition (Gubinelli): Y is controlled by X if there exists a $\operatorname{map} Y^{\prime}:[0,1] \rightarrow \mathbb{R}^{d \times d}$ in \mathcal{C}^{γ} such that for all $x, y \in[0,1]$

$$
Y(y)-Y(x)=Y^{\prime}(x)(X(y)-X(x))+R_{Y}(y, x)
$$

where $|R(x, y)| \lesssim|x-y|^{2 \gamma}$.

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X:[0,1] \rightarrow \mathbb{R}^{d}$ (say in \mathcal{C}^{γ} for $0<\gamma<1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y:[0,1] \rightarrow \mathbb{R}^{d}$ if "it looks like X on small scales".

Definition (Gubinelli): Y is controlled by X if there exists a $\operatorname{map} Y^{\prime}:[0,1] \rightarrow \mathbb{R}^{d \times d}$ in \mathcal{C}^{γ} such that for all $x, y \in[0,1]$

$$
Y(y)-Y(x)=Y^{\prime}(x)(X(y)-X(x))+R_{Y}(y, x)
$$

where $|R(x, y)| \lesssim|x-y|^{2 \gamma}$.
Allows to "treat the \mathcal{C}^{γ} function Y like a $\mathcal{C}^{2 \gamma}$ function.

Controlled rough paths II

Regularity structure: $T=T_{0} \oplus T_{\gamma}=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}$. Group
$G=\mathbb{R}^{d}$ acting as $\Gamma(a, b)=(a-b h, b)$.

Controlled rough paths II

Regularity structure: $T=T_{0} \oplus T_{\gamma}=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}$. Group
$G=\mathbb{R}^{d}$ acting as $\Gamma(a, b)=(a-b h, b)$.
Model: $(a, b) \in T, x, y \in[0,1]$

$$
\begin{aligned}
\Pi_{X}(a, b) & =a+b(X(y)-X(x)) \\
\Gamma_{x, y}(a, b) & =(a+b(X(y)-X(x)), b)
\end{aligned}
$$

Controlled rough paths II

Regularity structure: $T=T_{0} \oplus T_{\gamma}=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}$. Group
$G=\mathbb{R}^{d}$ acting as $\Gamma(a, b)=(a-b h, b)$.
Model: $(a, b) \in T, x, y \in[0,1]$

$$
\begin{aligned}
\Pi_{X}(a, b) & =a+b(X(y)-X(x)) \\
\Gamma_{x, y}(a, b) & =(a+b(X(y)-X(x)), b)
\end{aligned}
$$

Functions: $[0,1] \mapsto T=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}$ is controlled by X if

$$
\begin{aligned}
& \left|Y_{0}(y)-\left(\Gamma_{x, y} Y(x)\right)_{0}\right| \lesssim|y-x|^{2 \gamma} \\
& \left|Y_{\gamma}(y)-\left(\Gamma_{x, y} Y(x)\right)_{\gamma}\right| \lesssim|y-x|^{\gamma} .
\end{aligned}
$$

Definition of regularity structure

A regularity structure $\mathbb{T}=(A, T, G)$ consists of
$■$ An index set $A \subset \mathbb{R}$. We want $0 \in A, A$ bounded from below, and A locally finite.

Example: Polynomials on $\mathbb{R}^{d}: A=\mathbb{N}_{0}$,

Definition of regularity structure

A regularity structure $\mathbb{T}=(A, T, G)$ consists of
$■$ An index set $A \subset \mathbb{R}$. We want $0 \in A, A$ bounded from below, and A locally finite.

■ A model space $T=\bigoplus_{\alpha \in A} T_{\alpha}, T_{0} \approx \mathbb{R}$.

Example: Polynomials on $\mathbb{R}^{d}: A=\mathbb{N}_{0}$,
$T_{\alpha}=\left\{a_{k} X^{k},|k|=\alpha\right\}$ homogeneous polynomials of degree α

Definition of regularity structure

A regularity structure $\mathbb{T}=(A, T, G)$ consists of
$■$ An index set $A \subset \mathbb{R}$. We want $0 \in A, A$ bounded from below, and A locally finite.

■ A model space $T=\bigoplus_{\alpha \in A} T_{\alpha}, T_{0} \approx \mathbb{R}$.
■ A structure group G of linear operators acting on T. For $\Gamma \in G$ and $a \in T_{\alpha}$, one has

$$
\left\ulcorner a-a \in \bigoplus_{\beta<\alpha} T_{\beta}\right.
$$

Example: Polynomials on $\mathbb{R}^{d}: A=\mathbb{N}_{0}$,
$T_{\alpha}=\left\{a_{k} X^{k},|k|=\alpha\right\}$ homogeneous polynomials of degree α
$G \approx \mathbb{R}^{d}, \Gamma_{h} P(X)=P(X-h)$.

Definition of model

A model for $\mathbb{T}=(A, T, G)$ on \mathbb{R}^{d} consists of:
$■$ A map $\Gamma: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow G$ such that $\Gamma_{x x}=\mathrm{Id}$, and such that $\Gamma_{x y} \Gamma_{y z}=\Gamma_{x z}$ for all x, y, z.
■ Continuous linear maps $\Pi_{x}: T \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $\Pi_{y}=\Pi_{x} \circ \Gamma_{x y}$ for all x, y.

Example: Controlled rough paths: $A=\{0, \alpha\}$,
$T=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}, G=\mathbb{R}^{d}$.
For $\tau=(a, b)$ set $\Pi_{x} \tau(y)=a+b(X(y)-X(x))$ and
$\Gamma_{x, y}(a, b)=(a+b(X(y)-X(x)), b)$.

Definition of model

A model for $\mathbb{T}=(A, T, G)$ on \mathbb{R}^{d} consists of:
■ A map $\Gamma: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow G$ such that $\Gamma_{x x}=\mathrm{Id}$, and such that $\Gamma_{x y} \Gamma_{y z}=\Gamma_{x z}$ for all x, y, z.
■ Continuous linear maps $\Pi_{x}: T \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\Pi_{y}=\Pi_{x} \circ \Gamma_{x y} \text { for all } x, y .
$$

Locally uniformly in x, y

$$
\left|\left(\Pi_{x} a\right)\left(\mathcal{S}_{x}^{\delta} \phi\right)\right| \lesssim\|a\| \delta^{\ell}, \quad\left\|\Gamma_{x y} a\right\|_{m} \lesssim\|a\|\|x-y\|^{\ell-m}
$$

Example: Controlled rough paths: $A=\{0, \alpha\}$,
$T=\mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}, G=\mathbb{R}^{d}$.
For $\tau=(a, b)$ set $\Pi_{x} \tau(y)=a+b(X(y)-X(x))$ and
$\Gamma_{x, y}(a, b)=(a+b(X(y)-X(x)), b)$.

Definition of modelled distribution

Fix a regularity structure \mathbb{T} and a model (Π, Γ). Then, for $\gamma \in \mathbb{R}$, the space of modelled distributions \mathcal{D}^{γ} consists of all T_{γ}^{-}-valued functions f such that

$$
\|f\|_{\gamma ; \mathfrak{K}}=\sup _{x} \sup _{\beta<\gamma}\|f(x)\|_{\beta}+\sup _{\|x-y\|_{\mathfrak{s}} \leq 1} \sup _{\beta<\gamma} \frac{\left\|f(x)-\Gamma_{x y} f(y)\right\|_{\beta}}{\|x-y\|_{\mathfrak{s}}^{\gamma-\beta}}<\infty .
$$

Example: \mathcal{C}^{γ}-functions, Controlled distributions.

Reconstruction Theorem

$\mathbb{T}=(A, T, G)=$ regularity structure, $(\Pi, \Gamma)=\operatorname{model} \alpha=\min A$.
For every $\gamma>0$, there exists a unique, continuous linear map
$\mathcal{R}: \mathcal{D}^{\gamma} \rightarrow \mathcal{C}^{\alpha}$ such that (locally uniformly)

$$
\left|\left(\mathcal{R} f-\Pi_{x} f(x)\right)\left(\mathcal{S}_{x}^{\delta} \eta\right)\right| \lesssim \delta^{\gamma}\|\Pi\|_{\gamma}\|f\|_{\gamma}
$$

$\mathcal{S}_{x}^{\delta} \eta=$ scaled testfunction.

Reconstruction Theorem

$\mathbb{T}=(A, T, G)=$ regularity structure, $(\Pi, \Gamma)=\operatorname{model} \alpha=\min A$.
For every $\gamma>0$, there exists a unique, continuous linear map
$\mathcal{R}: \mathcal{D}^{\gamma} \rightarrow \mathcal{C}^{\alpha}$ such that (locally uniformly)

$$
\left|\left(\mathcal{R} f-\Pi_{x} f(x)\right)\left(\mathcal{S}_{x}^{\delta} \eta\right)\right| \lesssim \delta^{\gamma}\|\Pi\|_{\gamma}\|f\|_{\gamma}
$$

$\mathcal{S}_{x}^{\delta} \eta=$ scaled testfunction.

The condition $\gamma>0$ corresponds to the condition $s+\alpha>0$ in the multiplicative inequality for $u \in \mathcal{B}_{\infty, \infty}^{\alpha}$ and $v \in \mathcal{B}_{\infty, \infty}^{s}$.

Where are we?

Missing:

Where are we?

Missing:

■ Need to define operations for modelled distributions:

Where are we?

Missing:

■ Need to define operations for modelled distributions:

* Multiplication.

Where are we?

Missing:

■ Need to define operations for modelled distributions:

* Multiplication.
* Integration against heat kernel.

Where are we?

Missing:

\square Need to define operations for modelled distributions:

* Multiplication.
* Integration against heat kernel.
\square Need to build the right regularity structure for a given model.

Where are we?

Missing:

■ Need to define operations for modelled distributions:

* Multiplication.
* Integration against heat kernel.
$■$ Need to build the right regularity structure for a given model.
■ Need to check that renormalised models converge.

