Non-linear SPDEs, modelled distributions and renormalisation Part I

Hendrik Weber

Mathematics Institute University of Warwick

Potsdam, 08.11.2013

Based on: M.Hairer "A theory of regularity structures" *arXiv:1303.5113*.

Aim: Construct solutions for very singular SPDEs. Examples:

$$\begin{split} \partial_t h &= \partial_x^2 h + (\partial_x h)^2 + \xi, & d = 1, \quad (\text{KPZ}) \\ \partial_t u &= \Delta u + f_{ij}(u) \, \partial_i u \, \partial_j u + g(u) \eta & d = 2, \quad (\text{PAMg}) \\ \partial_t \Phi &= \Delta \Phi - \Phi^3 + \xi & d = 3. \quad (\Phi_3^4) \end{split}$$

 $\xi =$ space-time white noise, $\eta =$ spatial white noise.

(KPZ) model for growth of 1 + 1-dimensional surfaces. (PAM) diffusion in a random environment. (Φ^4) model for ferro magnet near its critical temperature.

Aim: Construct solutions for very singular SPDEs. Examples:

$$\begin{split} \partial_t h &= \partial_x^2 h + (\partial_x h)^2 + \xi, & d = 1, \quad (\text{KPZ}) \\ \partial_t u &= \Delta u + f_{ij}(u) \,\partial_i u \,\partial_j u + g(u) \eta & d = 2, \quad (\text{PAMg}) \\ \partial_t \Phi &= \Delta \Phi - \Phi^3 + \xi & d = 3. \quad (\Phi_3^4) \end{split}$$

 $\xi =$ space-time white noise, $\eta =$ spatial white noise.

Difficulty: Solution is too irregular to make sense of some products. $(u, v) \mapsto uv$ for $u \in \mathcal{B}^{\alpha}_{\infty,\infty}$, $v \in \mathcal{B}^{s}_{\infty,\infty}$ only well defined if $s + \alpha > 0$.

Relation to QFT

In QFT Φ_3^4 is measure μ on $\mathcal{D}'(\mathbb{R}^3)$ which formally satisfies

$$\mu(d\phi) = rac{1}{Z} \exp\left(-\mathcal{S}(\phi)
ight) \prod_{x\in\mathbb{R}^3} d\phi_x$$

where $S(\phi) = \int |\nabla \phi|^2 + \phi^4 \, dx$.

In QFT Φ_3^4 is measure μ on $\mathcal{D}'(\mathbb{R}^3)$ which formally satisfies $\mu(d\phi) = \frac{1}{Z} \exp\left(-\mathcal{S}(\phi)\right) \prod_{x \in \mathbb{R}^3} d\phi_x$

where $S(\phi) = \int |\nabla \phi|^2 + \phi^4 dx$.

On \mathbb{R}^d under very general assumptions on $\mathcal{S} \colon \mathbb{R}^d \to \mathbb{R}$ the measure

$$\mu = \frac{1}{Z} \exp(-\mathcal{S}(x)) \, dx$$

is the unique invariant measure of the stochastic differential equation

$$dx(t) = -\nabla S(x(t)) \, dt + \sqrt{2} \, dW(t).$$

Relation to QFT

In QFT Φ_3^4 is measure μ on $\mathcal{D}'(\mathbb{R}^3)$ which formally satisfies

$$\mu(d\phi) = \frac{1}{Z} \exp\left(-\mathcal{S}(\phi)\right) \prod_{x \in \mathbb{R}^3} d\phi_x$$

where $S(\phi) = \int |\nabla \phi|^2 + \phi^4 \, dx$.

SPDE can formally be rewritten

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi$$

= $-\frac{\delta S(\phi)}{\delta \phi} + \sqrt{2} \, dW.$

In QFT Φ_3^4 is measure μ on $\mathcal{D}'(\mathbb{R}^3)$ which formally satisfies

$$\mu(d\phi) = rac{1}{Z} \exp\left(-\mathcal{S}(\phi)
ight) \prod_{x\in\mathbb{R}^3} d\phi_x$$

where $S(\phi) = \int |\nabla \phi|^2 + \phi^4 \, dx$.

SPDE can formally be rewritten

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi$$

= $-\frac{\delta S(\phi)}{\delta \phi} + \sqrt{2} \, dW.$

Rigorous (at least in 1 and 2 dimensions in finite volume) by finite dimensional approximations.

Equations of the form

 $\mathcal{L} u = F(u,\xi) ,$

 \mathcal{L} smoothing linear operator. *F* non-linear function, ξ noise.

Equations of the form

 $\mathcal{L} u = F(u,\xi) ,$

 \mathcal{L} smoothing linear operator. \mathcal{F} non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower order.

Example (KPZ): scaling $x \mapsto \varepsilon x$, $t \mapsto \varepsilon^2 t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \varepsilon^{1/2} (\partial_x \tilde{h})^2 + \tilde{\xi} .$$

Equations of the form

 $\mathcal{L} u = F(u,\xi) ,$

 \mathcal{L} smoothing linear operator. \mathcal{F} non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower order.

Example (KPZ): scaling $x \mapsto \varepsilon x$, $t \mapsto \varepsilon^2 t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \varepsilon^{1/2} (\partial_x \tilde{h})^2 + \tilde{\xi} \; .$$

Note: Sub-criticality corresponds to superrenormalisable theories.

Equations of the form

 $\mathcal{L} u = F(u,\xi) ,$

 \mathcal{L} smoothing linear operator. \mathcal{F} non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower order.

Example (KPZ): scaling $x \mapsto \varepsilon x$, $t \mapsto \varepsilon^2 t$ and $\phi \mapsto \varepsilon^{-\frac{1}{2}} \phi$, leaves Stochastic heat equation invariant. Under this scaling (KPZ) becomes

$$\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \varepsilon^{1/2} (\partial_x \tilde{h})^2 + \tilde{\xi} .$$

Note: Different from 1/3; 2/3; 1-scaling. This is interesting on large scales.

Type of solution

Naive approach: Solve $\mathcal{L}u_{\varepsilon} = F(u_{\varepsilon}, \xi_{\varepsilon})$ for $\xi_{\varepsilon} =$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \to 0$. Equations need to be renormalised.

Type of solution

Naive approach: Solve $\mathcal{L}u_{\varepsilon} = F(u_{\varepsilon}, \xi_{\varepsilon})$ for $\xi_{\varepsilon} =$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \to 0$. Equations need to be renormalised.

Examples:

$$\begin{split} \partial_t h_{\varepsilon} &= \partial_x^2 h_{\varepsilon} + \left((\partial_x h_{\varepsilon})^2 - \boldsymbol{C}_{\varepsilon} \right) + \xi_{\varepsilon} \\ \partial_t u_{\varepsilon} &= \Delta u_{\varepsilon} + f_{ij}(u_{\varepsilon}) \left(\partial_i u_{\varepsilon} \partial_j u_{\varepsilon} - \boldsymbol{C}_{\varepsilon} \delta_{i,j} \right) + g(u_{\varepsilon})(\eta_{\varepsilon} - \hat{\boldsymbol{C}}_{\varepsilon} g'(u_{\varepsilon})) \\ \partial_t \Phi_{\varepsilon} &= \Delta \Phi_{\varepsilon} - (\Phi_{\varepsilon}^3 - \boldsymbol{C}_{\varepsilon} \Phi_{\varepsilon}) + \xi_{\varepsilon} \;, \end{split}$$

Main result: There are choices of C_{ε} , \hat{C}_{ε} such that solutions converge to limit which is independent of choice of mollifier.

Type of solution

Naive approach: Solve $\mathcal{L}u_{\varepsilon} = F(u_{\varepsilon}, \xi_{\varepsilon})$ for $\xi_{\varepsilon} =$ smoothened noise, then remove smoothing. Does not converge as $\varepsilon \to 0$. Equations need to be renormalised.

Examples:

$$\begin{split} \partial_t h_{\varepsilon} &= \partial_x^2 h_{\varepsilon} + \left((\partial_x h_{\varepsilon})^2 - \boldsymbol{C}_{\varepsilon} \right) + \xi_{\varepsilon} \\ \partial_t u_{\varepsilon} &= \Delta u_{\varepsilon} + f_{ij}(u_{\varepsilon}) \left(\partial_i u_{\varepsilon} \partial_j u_{\varepsilon} - \boldsymbol{C}_{\varepsilon} \delta_{i,j} \right) + g(u_{\varepsilon})(\eta_{\varepsilon} - \hat{\boldsymbol{C}}_{\varepsilon} g'(u_{\varepsilon})) \\ \partial_t \Phi_{\varepsilon} &= \Delta \Phi_{\varepsilon} - (\Phi_{\varepsilon}^3 - \boldsymbol{C}_{\varepsilon} \Phi_{\varepsilon}) + \xi_{\varepsilon} \;, \end{split}$$

Main result: There are choices of C_{ε} , \hat{C}_{ε} such that solutions converge to limit which is independent of choice of mollifier.

Construction gives detailed description of local structure of solutions, regularity, approximations.

Schematic construction

 $\mathscr{F} =$ " {right hand sides}", $\mathscr{M} =$ " {Models }", $\mathcal{D}_{T}^{\gamma,\eta} =$ " {modelled distributions } ",

 $\mathcal{R} =$ "Reconstruction operator",

 $\mathfrak{R} =$ "Renormalisation group."

Canonical regularity structure I

Canonical regularity structure:

Î = ⊕_{α∈ℕ₀} T_α = ℝ[X₁,..., X_d] where T_α = { homogeneous polynomials of degree α }.
 Ĝ = ℝ^d acts on Î by translation. For h ∈ ℝ^d define Γ_hP(X) = P(X - h).

For $a \in T_{\alpha}$ we have $\Gamma_h a - a \in \bigoplus_{\beta < \alpha} T_{\beta}$.

Canonical regularity structure I

Canonical regularity structure:

For $a \in T_{\alpha}$ we have $\Gamma_h a - a \in \bigoplus_{\beta < \alpha} T_{\beta}$.

Canonical model: For $\tau \in T$ and $x \in \mathbb{R}^d$ set

$$\Pi_{\boldsymbol{x}}\tau(\boldsymbol{y})=\sum_{\alpha\geq 0}\tau_{\alpha}(\boldsymbol{y}-\boldsymbol{x})^{\alpha}.$$

Canonical regularity structure I

Canonical regularity structure:

For $a \in T_{\alpha}$ we have $\Gamma_h a - a \in \bigoplus_{\beta < \alpha} T_{\beta}$.

Canonical model: For $\tau \in T$ and $x \in \mathbb{R}^d$ set

$$\Pi_{\mathbf{X}} \tau(\mathbf{y}) = \sum_{\alpha \geq \mathbf{0}} \tau_{\alpha} (\mathbf{y} - \mathbf{X})^{\alpha}.$$

Clearly $\Pi_y \tau(z) = \Gamma_{y-x} \Pi_x(z)$ and for $\tau \in T_\alpha$ we have $|\Pi_x \tau(y)| \lesssim |\tau| |y-x|^\alpha$.

Description of functions $f: \mathbb{R}^d \to \mathbb{R}$ smooth.

Then *f* can be "lifted" to a function $F : \mathbb{R}^d \to T$

$$F_{\alpha}(x) := \sum_{|k|=\alpha} \frac{1}{k!} \partial^k f(x) X^k$$
 for $\alpha \le n$.

Characterisation of Hölder spaces: $f \in C^{\gamma}(\mathbb{R}^d) \ \gamma \notin \mathbb{N}$ if and only if for $\alpha < \gamma$ (locally uniformly around *x*)

$$|\mathcal{F}_lpha(m{y})-({\sf \Gamma}_{m{y}-m{x}}\mathcal{F})_lpha(m{x})|\lesssim |m{y}-m{x}|^{\gamma-lpha}.$$

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X: [0, 1] \to \mathbb{R}^d$ (say in C^{γ} for $0 < \gamma < 1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y: [0, 1] \to \mathbb{R}^d$ if "it looks like *X* on small scales".

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X: [0,1] \to \mathbb{R}^d$ (say in C^{γ} for $0 < \gamma < 1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y: [0,1] \to \mathbb{R}^d$ if "it looks like *X* on small scales".

Definition (Gubinelli): *Y* is controlled by *X* if there exists a map Y': $[0, 1] \rightarrow \mathbb{R}^{d \times d}$ in C^{γ} such that for all $x, y \in [0, 1]$

 $Y(y) - Y(x) = Y'(x)(X(y) - X(x)) + R_Y(y, x),$

where $|R(x, y)| \lesssim |x - y|^{2\gamma}$.

Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an irregular function $X: [0,1] \to \mathbb{R}^d$ (say in C^{γ} for $0 < \gamma < 1$) for which certain non-linear operations are defined, we can hope to make sense of these operations for $Y: [0,1] \to \mathbb{R}^d$ if "it looks like *X* on small scales".

Definition (Gubinelli): *Y* is controlled by *X* if there exists a map Y': $[0, 1] \rightarrow \mathbb{R}^{d \times d}$ in C^{γ} such that for all $x, y \in [0, 1]$

 $Y(y) - Y(x) = Y'(x)(X(y) - X(x)) + R_Y(y, x),$

where $|R(x, y)| \lesssim |x - y|^{2\gamma}$.

Allows to "treat the C^{γ} function Y like a $C^{2\gamma}$ function.

Controlled rough paths II

Regularity structure: $T = T_0 \oplus T_{\gamma} = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$. Group $G = \mathbb{R}^d$ acting as $\Gamma(a, b) = (a - bh, b)$.

Controlled rough paths II

Regularity structure: $T = T_0 \oplus T_{\gamma} = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$. Group $G = \mathbb{R}^d$ acting as $\Gamma(a, b) = (a - bh, b)$.

Model: $(a, b) \in T, x, y \in [0, 1]$

 $\Pi_{x}(a,b) = a + b(X(y) - X(x))$ $\Gamma_{x,y}(a,b) = (a + b(X(y) - X(x)), b).$

Controlled rough paths II

Regularity structure: $T = T_0 \oplus T_{\gamma} = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$. Group $G = \mathbb{R}^d$ acting as $\Gamma(a, b) = (a - bh, b)$.

Model: $(a, b) \in T, x, y \in [0, 1]$

$$\Pi_X(a,b) = a + b(X(y) - X(x))$$

$$\Gamma_{x,y}(a,b) = (a + b(X(y) - X(x)), b)$$

Functions: $[0, 1] \mapsto T = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ is controlled by *X* if

$$ert Y_0(y) - (\Gamma_{x,y}Y(x))_0 ert \lesssim ert y - x ert^{2\gamma}$$

 $ert Y_\gamma(y) - (\Gamma_{x,y}Y(x))_\gamma ert \lesssim ert y - x ert^\gamma.$

Definition of regularity structure

A regularity structure $\mathbb{T} = (A, T, G)$ consists of

An index set A ⊂ ℝ. We want 0 ∈ A, A bounded from below, and A locally finite.

Example: Polynomials on \mathbb{R}^d : $A = \mathbb{N}_0$,

Definition of regularity structure

A regularity structure $\mathbb{T} = (A, T, G)$ consists of

- An index set A ⊂ ℝ. We want 0 ∈ A, A bounded from below, and A locally finite.
- A model space $T = \bigoplus_{\alpha \in A} T_{\alpha}, T_0 \approx \mathbb{R}$.

Example: Polynomials on \mathbb{R}^d : $A = \mathbb{N}_0$,

 $T_{\alpha} = \{a_k X^k, |k| = \alpha\}$ homogeneous polynomials of degree α

Definition of regularity structure

- A regularity structure $\mathbb{T} = (A, T, G)$ consists of
 - An index set A ⊂ ℝ. We want 0 ∈ A, A bounded from below, and A locally finite.
 - A model space $T = \bigoplus_{\alpha \in A} T_{\alpha}$, $T_0 \approx \mathbb{R}$.
 - A *structure group G* of linear operators acting on *T*. For $\Gamma \in G$ and $a \in T_{\alpha}$, one has

$${\sf \Gamma} {m a} - {m a} \in igoplus_{eta < lpha} {\sf T}_eta \;.$$

Example: Polynomials on \mathbb{R}^d : $A = \mathbb{N}_0$,

 $T_{\alpha} = \{a_k X^k, |k| = \alpha\}$ homogeneous polynomials of degree α $G \approx \mathbb{R}^d$, $\Gamma_h P(X) = P(X - h)$.

Definition of model

A model for $\mathbb{T} = (A, T, G)$ on \mathbb{R}^d consists of:

• A map $\Gamma : \mathbb{R}^d \times \mathbb{R}^d \to G$ such that $\Gamma_{xx} = Id$, and such that $\Gamma_{xy} \Gamma_{yz} = \Gamma_{xz}$ for all x, y, z.

Continuous linear maps $\Pi_x : T \to S'(\mathbb{R}^d)$ such that $\Pi_y = \Pi_x \circ \Gamma_{xy}$ for all x, y.

Example: Controlled rough paths: $A = \{0, \alpha\}$, $T = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$, $G = \mathbb{R}^d$. For $\tau = (a, b)$ set $\Pi_x \tau(y) = a + b(X(y) - X(x))$ and $\Gamma_{x,y}(a, b) = (a + b(X(y) - X(x)), b)$.

Definition of model

A model for $\mathbb{T} = (A, T, G)$ on \mathbb{R}^d consists of:

• A map $\Gamma : \mathbb{R}^d \times \mathbb{R}^d \to G$ such that $\Gamma_{xx} = Id$, and such that $\Gamma_{xy} \Gamma_{yz} = \Gamma_{xz}$ for all x, y, z.

Continuous linear maps $\Pi_x : T \to S'(\mathbb{R}^d)$ such that $\Pi_y = \Pi_x \circ \Gamma_{xy}$ for all x, y.

Locally uniformly in x, y

 $|(\Pi_x a)(\mathcal{S}^{\delta}_x \phi)| \lesssim ||a|| \delta^{\ell}, \quad ||\Gamma_{xy} a||_m \lesssim ||a|| ||x-y||^{\ell-m},.$

Example: Controlled rough paths: $A = \{0, \alpha\},$ $T = \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, G = \mathbb{R}^d.$ For $\tau = (a, b)$ set $\Pi_x \tau(y) = a + b(X(y) - X(x))$ and $\Gamma_{x,y}(a, b) = (a + b(X(y) - X(x)), b).$ Fix a regularity structure \mathbb{T} and a model (Π, Γ) . Then, for $\gamma \in \mathbb{R}$, the space of *modelled distributions* \mathcal{D}^{γ} consists of all \mathcal{T}_{γ}^{-} -valued functions *f* such that

$$|||f|||_{\gamma;\mathfrak{K}} = \sup_{x} \sup_{\beta < \gamma} ||f(x)||_{\beta} + \sup_{||x-y||_{\mathfrak{s}} \le 1} \sup_{\beta < \gamma} \frac{||f(x) - \Gamma_{xy}f(y)||_{\beta}}{||x-y||_{\mathfrak{s}}^{\gamma-\beta}} < \infty .$$

Example: C^{γ} -functions, Controlled distributions.

 $\mathbb{T} = (A, T, G) = \text{regularity structure, } (\Pi, \Gamma) = \text{model } \alpha = \min A.$

For every $\gamma > 0$, there exists a unique, continuous linear map $\mathcal{R} : \mathcal{D}^{\gamma} \to \mathcal{C}^{\alpha}$ such that (locally uniformly)

 $|(\mathcal{R}f - \prod_{x} f(x))(\mathcal{S}_{x}^{\delta}\eta)| \lesssim \delta^{\gamma} ||\Pi||_{\gamma} ||f||_{\gamma}.$

 $S_x^{\delta}\eta =$ scaled testfunction.

 $\mathbb{T} = (A, T, G) = \text{regularity structure, } (\Pi, \Gamma) = \text{model } \alpha = \min A.$

For every $\gamma > 0$, there exists a unique, continuous linear map $\mathcal{R} : \mathcal{D}^{\gamma} \to \mathcal{C}^{\alpha}$ such that (locally uniformly)

 $\left| (\mathcal{R}f - \prod_{x} f(x)) (\mathcal{S}_{x}^{\delta} \eta) \right| \lesssim \delta^{\gamma} \|\Pi\|_{\gamma} \|\|f\|_{\gamma}.$

 $S_x^{\delta}\eta =$ scaled testfunction.

The condition $\gamma > 0$ corresponds to the condition $s + \alpha > 0$ in the multiplicative inequality for $u \in \mathcal{B}_{\infty,\infty}^{\alpha}$ and $v \in \mathcal{B}_{\infty,\infty}^{s}$.

Missing:

Need to define operations for modelled distributions:

- Need to define operations for modelled distributions:
 - * Multiplication.

- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.

- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.

- Need to define operations for modelled distributions:
 - * Multiplication.
 - * Integration against heat kernel.
- Need to build the right regularity structure for a given model.
- Need to check that renormalised models converge.