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Introduction

Aim: Construct solutions for very singular SPDEs.

Examples:

∂th = ∂2
x h + (∂xh)2 + ξ, d = 1, (KPZ)

∂tu = ∆u + fij(u) ∂iu ∂ju + g(u)η d = 2, (PAMg)

∂t Φ = ∆Φ− Φ3 + ξ d = 3. (Φ4
3)

ξ = space-time white noise, η = spatial white noise.

(KPZ) model for growth of 1 + 1-dimensional surfaces. (PAM)

diffusion in a random environment. (Φ4) model for ferro magnet

near its critical temperature.

p.3



Introduction

Aim: Construct solutions for very singular SPDEs.

Examples:

∂th = ∂2
x h + (∂xh)2 + ξ, d = 1, (KPZ)

∂tu = ∆u + fij(u) ∂iu ∂ju + g(u)η d = 2, (PAMg)

∂t Φ = ∆Φ− Φ3 + ξ d = 3. (Φ4
3)

ξ = space-time white noise, η = spatial white noise.

Difficulty: Solution is too irregular to make sense of some

products. (u, v) 7→ uv for u ∈ Bα∞,∞, v ∈ Bs
∞,∞ only well defined

if s + α > 0.
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Relation to QFT

In QFT Φ4
3 is measure µ on D′(R3) which formally satisfies

µ(dφ) =
1
Z

exp
(
− S(φ)

) ∏
x∈R3

dφx

where S(φ) =
∫
|∇φ|2 + φ4 dx .

SPDE can formally be rewritten

∂t Φ = ∆Φ− Φ3 + ξ

= −δS(φ)

δφ
+
√

2 dW .

Rigorous (at least in 1 and 2 dimensions in finite volume) by

finite dimensional approximations.
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Scope of the theory

Equations of the form

Lu = F (u, ξ) ,

L smoothing linear operator. F non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower

order.

Example (KPZ): scaling x 7→ εx , t 7→ ε2t and φ 7→ ε−
1
2φ, leaves

Stochastic heat equation invariant. Under this scaling (KPZ)

becomes

∂t h̃ = ∂2
x h̃ + ε1/2(∂x h̃)2 + ξ̃ .

Note: Different from 1/3; 2/3; 1-scaling. This is interesting on

large scales.

p.5



Scope of the theory

Equations of the form

Lu = F (u, ξ) ,

L smoothing linear operator. F non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower

order.

Example (KPZ): scaling x 7→ εx , t 7→ ε2t and φ 7→ ε−
1
2φ, leaves

Stochastic heat equation invariant. Under this scaling (KPZ)

becomes

∂t h̃ = ∂2
x h̃ + ε1/2(∂x h̃)2 + ξ̃ .

Note: Different from 1/3; 2/3; 1-scaling. This is interesting on

large scales.

p.5



Scope of the theory

Equations of the form

Lu = F (u, ξ) ,

L smoothing linear operator. F non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower

order.

Example (KPZ): scaling x 7→ εx , t 7→ ε2t and φ 7→ ε−
1
2φ, leaves

Stochastic heat equation invariant. Under this scaling (KPZ)

becomes

∂t h̃ = ∂2
x h̃ + ε1/2(∂x h̃)2 + ξ̃ .

Note: Sub-criticality corresponds to superrenormalisable

theories.

Note: Different from 1/3; 2/3; 1-scaling. This is interesting on

large scales.

p.5



Scope of the theory

Equations of the form

Lu = F (u, ξ) ,

L smoothing linear operator. F non-linear function, ξ noise.

Subcriticality: On small scales the non-linear term is lower

order.

Example (KPZ): scaling x 7→ εx , t 7→ ε2t and φ 7→ ε−
1
2φ, leaves

Stochastic heat equation invariant. Under this scaling (KPZ)

becomes

∂t h̃ = ∂2
x h̃ + ε1/2(∂x h̃)2 + ξ̃ .

Note: Different from 1/3; 2/3; 1-scaling. This is interesting on

large scales.
p.5



Type of solution

Naive approach: Solve Luε = F (uε, ξε) for ξε = smoothened

noise, then remove smoothing. Does not converge as ε→ 0.

Equations need to be renormalised.

Examples:

∂thε = ∂2
x hε + ((∂xhε)2 − Cε) + ξε

∂tuε = ∆uε + fij(uε)
(
∂iuε ∂juε − Cεδi,j) + g(uε)(ηε − Ĉεg′(uε))

∂t Φε = ∆Φε − (Φ3
ε − CεΦε) + ξε ,

Main result: There are choices of Cε, Ĉε such that solutions

converge to limit which is independent of choice of mollifier.

Construction gives detailed description of local structure of

solutions, regularity, approximations.
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Schematic construction

F M

R

×× Cα(Td ) Dγ,ηT

·

F

R

× C

ξ

∈
× Cα(Td )

u0
∈

CαT

RΨ

SA

SC

F =" {right hand sides}",
M =" {Models }",
Dγ,ηT =" {modelled distributions } ",

R ="Reconstruction operator",

R ="Renormalisation group."

Hallo
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Canonical regularity structure I

Canonical regularity structure:

T̂ =
⊕
α∈N0

Tα = R[X1, . . . ,Xd ]

where Tα = { homogeneous polynomials of degree α }.

Ĝ = Rd acts on T̂ by translation. For h ∈ Rd define

ΓhP(X ) = P(X − h).

For a ∈ Tα we have Γha− a ∈ ⊕β<αTβ.

Canonical model: For τ ∈ T and x ∈ Rd set

Πxτ(y) =
∑
α≥0

τα(y − x)α.

Clearly Πyτ(z) = Γy−x Πx (z) and for τ ∈ Tα we have

|Πxτ(y)| . |τ | |y − x |α.
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Canonical regularity structure II

Description of functions f : Rd → R smooth.

Then f can be “lifted" to a function F : Rd → T

Fα(x) :=
∑
|k |=α

1
k !
∂k f (x) X k for α ≤ n.

Characterisation of Hölder spaces: f ∈ Cγ(Rd ) γ /∈ N if and

only if for α < γ (locally uniformly around x)

|Fα(y)− (Γy−xF )α(x)| . |y − x |γ−α.

p.9



Example: Controlled rough paths I

Aim: Moving from perturbative to non-perturbative. Given an

irregular function X : [0,1]→ Rd (say in Cγ for 0 < γ < 1) for

which certain non-linear operations are defined, we can hope to

make sense of these operations for Y : [0,1]→ Rd if “it looks

like X on small scales".

Definition (Gubinelli): Y is controlled by X if there exists a

map Y ′ : [0,1]→ Rd×d in Cγ such that for all x , y ∈ [0,1]

Y (y)− Y (x) = Y ′(x)(X (y)− X (x)) + RY (y , x),

where |R(x , y)| . |x − y |2γ .

Allows to “treat the Cγ function Y like a C2γ function.
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Controlled rough paths II

Regularity structure: T = T0 ⊕ Tγ = Rd ⊕ Rd×d . Group

G = Rd acting as Γ(a,b) = (a− bh,b).

Model: (a,b) ∈ T , x , y ∈ [0,1]

Πx (a,b) = a + b(X (y)− X (x))

Γx ,y (a,b) = (a + b(X (y)− X (x)),b).

Functions: [0,1] 7→ T = Rd ⊕ Rd×d is controlled by X if

|Y0(y)− (Γx ,yY (x))0| . |y − x |2γ

|Yγ(y)− (Γx ,yY (x))γ | . |y − x |γ .
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Definition of regularity structure

A regularity structure T = (A,T ,G) consists of

An index set A ⊂ R. We want 0 ∈ A, A bounded from

below, and A locally finite.

A model space T =
⊕
α∈A Tα, T0 ≈ R.

A structure group G of linear operators acting on T .

For Γ ∈ G and a ∈ Tα, one has

Γa− a ∈
⊕
β<α

Tβ .

Example: Polynomials on Rd : A = N0,

Tα = {akX k , |k | = α} homogeneous polynomials of degree α

G ≈ Rd , ΓhP(X ) = P(X − h).
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Definition of model

A model for T = (A,T ,G) on Rd consists of:

A map Γ: Rd × Rd → G such that Γxx = Id, and such that

Γxy Γyz = Γxz for all x , y , z.

Continuous linear maps Πx : T → S ′(Rd ) such that

Πy = Πx ◦ Γxy for all x , y .

Locally uniformly in x , y

|(Πxa)
(
Sδxφ

)
| . ‖a‖δ` , ‖Γxya‖m . ‖a‖ ‖x − y‖`−m , .

Example: Controlled rough paths: A = {0, α},
T = Rd ⊕ Rd×d , G = Rd .

For τ = (a,b) set Πxτ(y) = a + b(X (y)− X (x)) and

Γx ,y (a,b) = (a + b(X (y)− X (x)),b).
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Definition of modelled distribution

Fix a regularity structure T and a model (Π, Γ). Then, for γ ∈ R,

the space of modelled distributions Dγ consists of all

T−γ -valued functions f such that

|||f |||γ;K = sup
x

sup
β<γ
‖f (x)‖β+ sup

‖x−y‖s≤1
sup
β<γ

‖f (x)− Γxy f (y)‖β
‖x − y‖γ−βs

<∞ .

Example: Cγ-functions, Controlled distributions.
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Reconstruction Theorem

T = (A,T ,G) = regularity structure, (Π, Γ) = model α = min A.

For every γ > 0, there exists a unique, continuous linear map

R : Dγ → Cα such that (locally uniformly)

∣∣(Rf − Πx f (x)
)
(Sδxη)

∣∣ . δγ‖Π‖γ |||f |||γ .

Sδxη = scaled testfunction.

The condition γ > 0 corresponds to the condition s + α > 0 in

the multiplicative inequality for u ∈ Bα∞,∞ and v ∈ Bs
∞,∞.
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Where are we?

F M

R

×× Cα(Td ) Dγ,ηT

·

F

R

× C

ξ
∈

× Cα(Td )

u0

∈

CαT

RΨ

SA

SC

Missing:

Need to define operations for modelled distributions:
∗ Multiplication.

∗ Integration against heat kernel.

Need to build the right regularity structure for a given

model.

Need to check that renormalised models converge.
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