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Controlled paths/distributions

Controlled paths are paths which “looks like” a given path which often is
random (but not necessarily).

This proximity allows a great deal of computations to be carried on explicitly
on the base path and extends also to all controlled paths.

Successful approach which mixes functional analysis and probability.

Basic analogies
I Itô processes

dXt = ftdMt + gtdt

I Amplitude modulation

f (t) = g(t) sin(ωt)

with |supp ĝ|� ω.

[Joint work with R. Catellier, K. Chouk, P. Imkeller, N. Perkowski]
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Some interesting problems (I)

Define and solve the following kind of stochastic partial differential
equations.

I Stochastic differential equations (1+0): u ∈ [0, T]→ Rn

∂tu = f (u)ξ

with ξ : R→ Rm m-dimensional white noise in time.
I Burgers equations (1+1): u ∈ [0, T]× T→ Rn

∂tu = ∆u + f (u)Du + ξ

with ξ : R× T→ Rn space-time white noise.
I Parabolic Anderson model (1+2): u ∈ [0, T]× T2 → R

∂tu = ∆u + f (u)ξ

with ξ : T2 → R space white noise.

Recall that
ξ ∈ C−d/2−
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Some interesting problems (II)

Define and solve the following kind of stochastic partial differential
equations.

I Kardar-Parisi-Zhang equation (1+1)

∂th = ∆h + "(Du)2 −∞" + ξ

with ξ : R× T→ R space-time white noise.
I Stochastic quantization equation (1+3)

∂tu = ∆u + "u3" + ξ

with ξ : R× T3 → R space-time white noise.
I But (currently) not: Multiplicative SPDEs (1+1)

∂tu = ∆u + f (u)ξ

with ξ : R× T→ R space-time white noise.
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What can go wrong?

Consider the sequence of functions xn : R→ R2

x(t) =
1
n
(cos(2πn2t), sin(2πn2t))

then xn(·)→ 0 in Cγ([0, T];R2) for any γ < 1/2. But

I(xn,1, xn,2)(t) =
∫ t

0
xn,1(s)∂txn,2(s)ds→ t

2
YET ANOTHER INTRODUCTION TO ROUGH PATHS 31

· · ·

Figure 10. Moving freely in the third direction.

where C2 depends only on C1 and T .
Now, if tnk ! s ! tnk + T2−n−1 ! t ! tnk+1, we get by combining the

previous estimates that

|xn
s,t| ! C0C2‖x‖α((t− T2−n−1)α + (T2−n−1 − s)α)

! 2α−1C0C2‖x‖α(t− s)α.

We have then proved (21) with a constant which is in addition propor-
tional to ‖x‖α. "

Let us come back to the Remark 6 following Lemma 8. For α ∈
(1/3, 1/2], let us consider xt = (0, 0,ϕt) where ϕ ∈ C2α([0, T ]; R), then
one can find xn ∈ C1

p([0, T ]; R) such that xn converges uniformly to 0,
xn = (xn, A(xn; 0, ·)) is uniformly bounded in Cα([0, T ]; A(R2)) and
converges in Cβ([0, T ]; A(R2)) to x for any β < α. For this, one may
simply consider (see Figure 10)

zn
t =

1

n
√

π
(cos(2πtn2)− 1, sin(2πtn2)),

and then set xn
t = zn

ϕt
.

Thus, moving freely in the “third direction” is equivalent to accu-
mulate the areas of small loops. Using the language of differential
geometry, which we develop below, this new degree of freedom comes
from the lack of commutativity of (A(R2), #): a small loop of radius√

ε around the origin in the plane R2 is equivalent to a small displace-
ment of length ε in the third direction. To rephrase Remark 6, even if
ϕ ∈ C1([0, T ]; R), then one has to see x as a path in C1/2([0, T ]; A(R2))
that may be approximated by paths in C1

p([0, T ]; A(R2)) which converge
to x only in ‖ · ‖β for any β < 1/2. Hence, we recover the problem
underlined in Section 3.2.

5.7. Construction of the integral. Let f be a differential form in
Lip(γ; R2 → R) with γ > 1/α− 1.

If x ∈ Cα([0, T ]; A(R2)) with α > 1/2, then from Lemma 8, x =

(x,x3
0 + A(x)) with x = (x1,x2). Hence we set I(x)

def
= I(x) =

∫
x|[0,·]

f

which is well defined as a Young integral.
The next proposition will be refined later.

I(xn,1, xn,2)(t) 6→ I(0, 0)(t) = 0

The definite integral I(·, ·)(t) is not a continuous map Cγ × Cγ → R for
γ < 1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Functional analysis is not enough

Consider the random functions (Xn, Yn) : R→ R2

XN(t) =
∑

16n6N

gn

n
cos(2πnt) +

g ′n
n

sin(2πnt)

YN(t) =
∑

16n6N

gn

n
sin(2πnt) −

g ′n
n

cos(2πnt)

where (gn, g ′n)n>1 are iid normal variables. Then

I(XN, YN)(1) =
∫ 1

0
XN(s)∂sYN(s)ds = 2π

∑
16n6N

g2
n + (g ′n)2

n
→ +∞

almost surely as N →∞.

No continuous map on a space of paths can represent the integral I and allow
Brownian motion at the same time.
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Stochastic calculus is not enough

Itô theory has been very successful in handling integrals on Brownian motion
(and similar objects) are related differential equations. Key requirements:
I A "temporal" structure (filtration, adapted processes).
I A probability space.
I Martingales.

However sometimes:
I No (natural) temporal structure (no past/future, multidimensional

problems, Brownian sheets)
I Results independent of the probabilistic structure (many probabilities) or

of exceptional sets (continuity of Itô map with respect to the data).
I No (convenient) martingales around (SDEs driven by fractional

Brownian motion).
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Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces Cγ = Bγ∞,∞.

f ∈ Cγ, γ ∈ R iff
‖∆if‖L∞ . 2−iγ, i > 0

F(∆if )(ξ) = ρ(2−i|ξ|)f̂ (ξ)

where ρ : R→ R+ is a smooth function with support in [1/2, 5/2] and such
that ρ(x) = 1 if x ∈ [1, 2] and there exists θ : R→ R+ smooth and with
support [0, 1] such that θ(|x|) +

∑
i>0 ρ(2

−i|x|) = 1 for all x ∈ R.

F(∆−1f )(ξ) = θ(|ξ|)f̂ (ξ).

f =
∑
i>−1

∆if
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Paraproducts
Deconstruction of a product: f ∈ Cρ, g ∈ Cγ

fg =
∑

i,j>−1

∆if∆jg = π<(f , g) + π◦(f , g) + π>(f , g)

π<(f , g) = π>(g, f ) =
∑

i<j−1

∆if∆jg π◦(f , g) =
∑

|i−j|61

∆if∆jg

Paraproduct (Bony, Meyer et al.)

π<(f , g) ∈ Cmin(γ+ρ,γ)

π◦(f , g) ∈ Cγ+ρ if γ+ ρ > 0

Young integral: γ, ρ ∈ (0, 1)

fDg = π<(f , Dg)︸        ︷︷        ︸
Cγ−1

+π◦(f , Dg) + π>(f , Dg)︸                        ︷︷                        ︸
Cγ+ρ−1

Recall ∫ t

s
fudgu = fs(gt − gs) + O(|t − s|γ+ρ)
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(Para)controlled structure

Idea
Use the paraproduct to define a controlled structure. We say y ∈ D

γ,ρ
x if x ∈ Cγ

y = π<(yx, x) + y]

with yx ∈ Cρ and y] ∈ Cγ+ρ.

Paralinearization. Let ϕ : R→ R be a sufficiently smooth function and
x ∈ Cγ, γ > 0. Then

ϕ(x) = π<(ϕ ′(x), x) + C2γ

. A first commutator: f , g ∈ Cρ, x ∈ Cγ

π<(f ,π<(g, h)) = π<(fg, h) + Cγ+ρ

Stability. (ρ > γ)
ϕ(y) = π<(ϕ ′(y)yx, x) + Cγ+ρ
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A key commutator

All the difficulty is concentrated in the resonating term

π◦(f , g) =
∑

|i−j|61

∆if∆jg

which however is smoother than π<(f , g).

Paraproducts decouple the problem from the source of the problem.

Commutator
The linear form R(f , g, h) = π◦(π<(f , g), h) − fπ◦(g, h) satisfies

‖R(f , g, h)‖α+β+γ . ‖f‖α‖g‖β‖h‖γ

with α ∈ (0, 1), β+ γ < 0, α+ β+ γ > 0.

Paradifferential calculus allow algebraic computations to simplify the form of
the resonating terms (π◦).
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The Good, the Ugly and the Bad

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation Bε) and ϕ a smooth function. Then B ∈ Cγ for γ < 1/2.

ϕ(B)DB = π<(ϕ(B), DB)︸              ︷︷              ︸
the Bad

+π◦(ϕ(B), DB)︸             ︷︷             ︸
the Ugly

+π>(ϕ(B), DB)︸              ︷︷              ︸
the Good, C2γ−1

and recall the paralinearization

ϕ(B) = π<(ϕ ′(B), B) + C2γ

Then
π◦(ϕ(B), DB) = π◦(π<(ϕ ′(B), B), DB) + π◦(C2γ, DB)︸           ︷︷           ︸

OK

= π<(ϕ
′(B),π◦(B, DB)) + C3γ−1

Finally

ϕ(B)DB = π<(ϕ(B), DB) + π<(ϕ ′(B),π◦(B, DB)︸        ︷︷        ︸
"Besov area"

) + π>(ϕ(B), DB) + C3γ−1
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The Besov area

The Besov area π◦(B, DB) can be defined and studied efficiently using
Gaussian arguments:

π◦(Bε, DBε)→ π◦(B, DB)

almost surely in C2γ−1 as ε→ 0.

Remark. If d = 1

π◦(B, DB) =
1
2
(π◦(B, DB) + π◦(DB, B)) =

1
2

Dπ◦(B, B)

which is well defined.

Tools: Besov embeddings Lp(Ω; Cθ)→ Lp(Ω; Bθ
′

p,p) ' Bθ
′

p,p(Lp(Ω)), Gaussian
hypercontractivity Lp(Ω)→ L2(Ω), explicit L2 computations.
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Au delá des paraproduits

u : R→ Rd, ξ ∈ C−1/2− is 1d white noise. We want to solve

∂tu = f (u)ξ = f (u) ≺ ξ+ f (u) ◦ ξ+ f (u) � ξ

. Paracontrolled ansatz (∂tX = ξ, X ∈ C1/2−)

u = f (u) ≺ X + u] ⇒ ∂tu = ∂tf (u) ≺ X + f (u) ≺ ξ+ ∂tu]

so
∂tu] = −∂tf (u) ≺ X + f (u) ◦ ξ+ f (u) � ξ ∈ C0−

. Paralinearization: f (u) = f ′(u) ≺ u + R(f , u)

f (u) = (f ′(u)f (u)) ≺ X + R(f , u, X)

. Commutator lemma:

f (u) ◦ ξ = ((f ′(u)f (u)) ≺ X) ◦ ξ+ R(f , u, X) ◦ ξ

= (f ′(u)f (u))(X ◦ ξ) + C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ
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SDEs

The SDE
∂tu = f (u)ξ = f (u) ≺ ξ+ f (u) ◦ ξ+ f (u) � ξ

is equivalent to the system

∂tX =ξ

∂tu] =(f ′(u)f (u))(X ◦ ξ) − ∂tf (u) ≺ X
+ f (u) � ξ+ C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ

u =f (u) ≺ X + u]

. We can check that indeed

X ∈ C1/2−, (X ◦ ξ) ∈ C0−

. the system can be solved by fixed point.
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Generalized Parabolic Anderson Model on T2

L = ∂t − D2, u : R× T2 → R, ξ ∈ C−1 space white noise.

Lu = f (u)ξ

. Paracontrolled ansatz LX = ξ so X ∈ C1−

u = f (u) ≺ X + u] ⇒ Lu = Lf (u) ≺ X + Df (u) ≺ DX + f (u) ≺ ξ+ Lu]

. Paralinearization: f (u) = (f ′(u)f (u)) ≺ X + R(f , u, X)

f (u) ◦ ξ = (f ′(u)f (u))(X ◦ ξ) + C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ
Problem

X ◦ ξ = X ◦ LX = c + C0−

with c = +∞.
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Renormalization

To cure the problem we add a suitable counterterm to the equation.

Lu = f (u)ξ− c(f ′(u)f (u))

f (u)◦ξ− c(f ′(u)f (u)) = (f ′(u)f (u))(X ◦ξ− c)+C(f ′(u)f (u), X, ξ)+R(f , u, X)◦ξ

. The gPAM is equivalent to the equation

Lu] = −Lf (u) ≺ X + Df (u) ≺ DX + (f ′(u)f (u))(X ◦ ξ− c)

+C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ

X ∈ C1−, (X ◦ ξ− c) ∈ C0−, u] ∈ C2−
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The Kardar–Parisi–Zhang equation

∆h(t, x)

h(t, x)

ξ(t, x)
diffusion

drift F (∇h(t, x))

noise

Large scale dynamics of the height h : [0, T]× T→ R of an interface

∂th ' ∆h + F(Dh) + ξ

The universal limit should coincide with the large scale fluctuations of the
KPZ equation

∂th = ∆h + [(Dh)2 −∞] + ξ

with ξ : R× T→ R space-time white noise.
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Stochastic Burgers equation

Take u = Dh

Lu = Dξ+ Du2

u = u1 + u2 + · · · = u1 + u>2

Lu1 + Lu>2 = Dξ+ Du2
1 + 2Du1u>2 + Du2

>2

Lu1 = Dξ⇒ u1 ∈ C−1/2−

Lu2 + Lu>3 = Du2
1 + 2D(u1u2) + 2D(u1u>3) + Du2

2 + 2D(u>3u2) + Du2
>3

Lu2 = Du2
1 ⇒ u2 ∈ C0−

Lu3 + Lu>4 = 2D(u1u2) + 2D(u1u3) + 2D(u1u>4) + Du2
2 + 2Du>3u2 + Du2

>3

Lu3 = 2D(u1u2)⇒ u3 ∈ C1/2−

Lu>4 = 2D(u1u3) + 2D(u1u>4) + Du2
2 + 2D(u>3u2) + Du2

>3
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Paracontrolled ansatz for SBE
Recall:

u1 ∈ C−1/2−, u2 ∈ C0−, u3 ∈ C1/2−

Lu>4 = 2D(u1u3) + 2(u>4 ≺ Du1) + Du2
2 + 2D(u1 ◦ u>4) + 2(Du>4 ≺ u1)

+2D(u1 � u>4) + 2Du>3u2 + Du2
>3

. Ansatz: u>4 = Q + v ≺ X + v]

Lu>4 = LQ + Lv ≺ X + v ≺ LX − Dv ≺ DX + Lv]

LQ = 2D(u1u3), v = 2u>4, LX = Du1

X ∈ C3/2−, Q ∈ C1/2−

. The Ugly:

u1 ◦ u>4 = u1 ◦ (Q + v ≺ X + v]) = u1 ◦Q + u1 ◦ (v ≺ X) + u1 ◦ v]

= u1 ◦Q + v(u1 ◦ X) + R(v, u1, X) + u1 ◦ v]

. Final equation:

Lv] = 2Du>4 ≺ DX + Lu>4 ≺ X + Du2
2 + 2D(u1 ◦ u>4)

+2(Du>4 ≺ u1) + 2D(u1 � u>4) + 2Du>3u2 + Du2
>3
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Stochastic Quantization

Stochastic quantization of (Φ4)3 : ξ ∈ C−5/2−, u ∈ C−1/2−, u = u1 + u2 + u>3.

Lu = ξ+ λ(u3 − 3c1u − c2u)

Lu1 + Lu>2 = ξ+ λ(u3
1 − 3c1u1) + 3λ(u>2(u2

1 − c1)) + 3λ(u2
>2u1) + λu3

>2 − λc2u

. Lu1 = ξ⇒ u1 ∈ C−1/2−, Lu2 = λ(u3
1 − 3c1u1)⇒ u2 ∈ C1/2−

Lu>3 = 3λ(u>2(u2
1 − c1)) + 3λ(u2

2u1) + 6λ(u>3u2u1) + 3λ(u2
>3u1) + λu3

>2 − λc2u

. Ansatz: u>3 = 3λu>2 ≺ X + u], with LX = (u2
1 − c1)

Lu] = −3λLu>2 ≺ X+3λDu>2 ≺ DX+3λ(u>2◦(u2
1−c1)−c2u)+3λ(u>2 � (u2

1−c1))

+ 3λ(u2
2u1) + 6λ(u>3(u2u1)) + 3λ(u2

>3u1) + λu3
>2

u>2 ◦ (u2
1 − c1) − c2u = (u2 ◦ (u2

1 − c1) − c2u1) + (u>3 ◦ (u2
1 − c1) − c2u>2)

(u>3 ◦ (u2
1 − c1) − c2u>2) = (3λ(u>2 ≺ X) ◦ (u2

1 − c1) − c2u>2) + u] ◦ (u2
1 − c1)

= u>2(3λ(X ◦ (u2
1 − c1)) − c2) + 3λC(u>2, X, (u2

1 − c1)) + u] ◦ (u2
1 − c1)

. Basic objects: (u2
1 − c1), (u3

1 − 3c1u1), (3λ(X ◦ (u2
1 − c1)) − c2), (u2u1), (u2

2u1)
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Thanks
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