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§  Renormalization describes a change of  the interaction 

§  Renormalization removes infinities 

§  The S-matrix and causality 

§  Causality, renormalization and changing the interaction 



Mass renormalization 

§  Dynamics of  a sphere in a fluid 

§  The equation of  motion of  a sphere in a fluid 
submitted to a force     is  

      where 
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charge renormalization 

§  Apply an external current  

§  Assume that the response of  the system is 

§  The total current is 

§  The charge has been renormalized by  
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Removing infinities 

Feynman propagator 

Feynman diagram 

§  Example: 

§  The integral is divergent    
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Removing infinities 

We rewrite 

where 

§  The degree of  the denominator is 4: logarithmic 

divergence 

§  Replace             by the convergent 

§  The counter-term is local 
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History 

§  Dyson (1949): problem of  overlapping divergences 

§  Salam (1951): solution of  this problem 

§  Bogoliubov and Shirkov (1955) correct solution 

§  Bogoliubov and Parasiuk (1957) all-order proof  

§  Hepp (1966) correction of  the proof   

§  Standard BPH(Z) renormalization 
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Figure 9.1 Three superficially convergent diagrams with ω(G) = −2. The first has no subdivergences. Such

a diagram is referred to as a skeleton diagram. The second diagram has a logarithmically divergent subdiagram

γ =
./ 01.........

......
... ......

...
.........

! ! [ω(γ) = 0]. The third diagram has a quadratically divergent subdiagram γ = !2 [ω(γ) = 2].

A more elementary proof was given later by Hahn and Zimmermann [6]. It will not be repeated
here since it can be found in standard textbooks [7, 8]. An essential part of the theorem is
the elimination of possible extra overlapping divergences, which can in principle occur in sets
of subdiagrams which have common loop momenta, as shown in Fig. 9.2. In Appendix 9A,
the content of the theorem is illustrated by showing explicitly, in a diagram without subdi-
vergences, that no extra divergences are created by overlapping integrations, as stated by the
above theorem. All divergences come exclusively from superficial divergences of subdiagrams,
and from the superficial divergence of the final integral, but not from overlapping divergences.
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Figure 9.2 Two examples for overlapping divergences in φ4-theory. The overlapping subdiagrams are enclosed

by dashed boxes.

Historically, overlapping divergences were an obstacle to proving renormalizability of quan-
tum electrodynamics. For the electron self-energy, the problem was solved with the help of the
so-called Ward identity [9], which expresses the electron self-energy in terms of the vertex func-
tion, thereby eliminating all overlapping divergences. The convergence theorem is fundamental
to renormalization theory since it enables us to replace all subdivergences by finite subtracted
expressions.

A special outcome of the convergence theorem is that, after the subtraction of the diver-
gences, a subdiagram γ behaves as a function of its external momentum like γ(λp) = λω(γ) logk λ
for λ → ∞ with any k. Therefore, after the replacement of the superficially divergent subdia-
grams by the corresponding finite subtracted expressions, power counting tells us that any su-
perficially convergent diagram becomes finite. As an example, consider the diagram in Fig. 9.1.
If the superficial divergences are subtracted from the subdiagram, it will depend on its external
momentum like an ordinary vertex or like an ordinary propagator.

For φ4-theories, the number of the internal lines I in a Feynman diagram may be expressed
in terms of the number of vertices p and the number of external lines n as:

I = 2p −
n

2
. (9.5)

The superficial degree of divergence of the associated integral becomes therefore

ω(G) = D + n (1−D/2) + p(D − 4). (9.6)

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories
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History 

« Renormalization theory has a history of  egregious errors by distinguished 
savants. It has a justified reputation of  perversity; a method that works up to 13th 
order in the perturbation series fails in the 14th order. » 

     A. S. Wightman Renormalization Theory (1976) 

 

« As one of  the inventors, I remember that we thought of  QED in1949 as a 
temporary and jerry-built structure, with mathematical inconsistencies and 
renormalized infinities swept under the rug. We did not expect it to last more than 
ten years before some more solidly built theory would replace it. » 

                                  Freeman Dyson, Letter to Gerald Gabrielse 2006 

 

 

 



outline 

 

§  Renormalization describes a change of  the interaction 

§  Renormalization removes infinities 

§  The S-matrix and causality 

§  Causality, renormalization and changing the interaction 



S-matrix and causality 

§  Problem: formulate perturbative quantum field theory 

using only well-defined objects 

§  The causal approach  

§  Contributions of  
•  Heisenberg: the S-matrix (1943) 

•  Stueckelberg and Rivier: causality and extension (1950) 
•  Bogoliubov: extension (1952) 

•  Bogoliubov and Shirkov: causality and extension (1955) 
•  Epstein and Glaser: mathematically correct (1973)  

•  Brunetti and Fredenhagen: curved spacetime (2000) 



The s-matrix 

§  Wheeler (1937), Heisenberg (1943) 

§  Evolution operator 

§  Boundary condition 

§  Definition 

§  Physical meaning: (finite) scattering amplitude 

§  Causality (Stueckelberg): if                                      then 

i
@U(t;H)

@t
= H(t) ? U(t;H)

U(�1;H) = Id

S(H) = U(+1;H)

supp(H1) > supp(H2)

S(H1 +H2) = S(H1) ? S(H2)

U(t,H1 +H2) = U(t,H1) ? U(t,H2)



Star-product 

§  For                                        ,   

        the product is (Dütsch and Fredenhagen) 

§  Hopf  algebraic interpretation (Borcherds) 

§  The Laplace pairing: 

§  Wick’s theorem 

A = '

n1(x1) . . .'
np(xp) B = 'm1(y1) . . .'

mq (yq)

A ?B =
X

(A(1)|B(1))A(2)B(2)

(AB|C) =
X

(A|C(1))(B|C(2)) (A|BC) =
X

(A(1)|B)(A(2)|C)

(A ?B)(') = e
R
dxdyD+(x,y) �

2

�'1(x)�'2(y)A('1)B('2)|'1='2='

('|') = D+



Time-ordering operator 

§  Picard iteration 

§  Time ordering (Dyson iteration) 

§  Definition: 

         when 

§  Renormalization: what happens when  

§  Consequence of  the causality relation: 

         when  

S(H) = 1� i

Z 1

�1
H(t1)dt1 �

Z 1

�1

Z t1

�1
H(t1) ?H(t2)dt1dt2 + . . .
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1X
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T
�
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�
= H(t�(1)) ? · · · ?H(t�(n))

t�(1) > · · · > t�(n)

T (AB) = T (A) ? T (B)

B = Hk+1(t
0
1) . . .Hk+n(t

0
n)ti > t0j

ti = tj

A = H1(t1) . . .Hk(tk)



Relativistic causality 

§  Hamiltonian density          where 

§  Algebraic locality: if     and     are space-separated 

points, then 

§  Algebraic causality (Bogoliubov): Let 

      then 

 

         when no      is in the causal past of  any   

T (AB) = T (A) ? T (B)

x = (t, r)

H(t) =

Z

⌃(t)
H(x)dr

H(x)

H(x) ?H(y) = H(y) ?H(x)

A = H1(x1) . . .Hk(xk) B = Hk+1(y1) . . .Hk+n(yn)

yjxi

x

y



Simple example 

§  Causality: 

§  Feynman’s propagator: 

§  Causality implies 

 

 

§   Feynman in terms of  Wightman propagators 

§   Massless case 

 

x = (t, r)

DF (x) = ih0|'(x) ? '(0)|0i = D+(x) if t > 0

DF (x) = i⇥0|�(0) ⇥ �(x)|0⇤ = D�(x) = D+(�x) if t < 0

D±(x) =
1

4⇡2

1

(t⌥ i✏)2 � r

2

DF (x) = h0|T
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'(x)'(0)
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T
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�
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Simple example 

§  Equivalent form: 

 

§   Three open sets 

§   The union of  the three sets is  

 

R4\{0}

D±(x) = P

1

4⇡2
x

2
± i

4⇡
sign(t)�(x2)

DF = D+ = D� on {x;x2
< 0}

DF = D+ on {x;x2 � 0, t > 0}

DF = D� on {x;x2 � 0, t < 0}

DF = D� on {x;x2
< 0 or x

2 � 0 and t < 0}
DF = D+ on {x;x2

< 0 or x

2 � 0 and t > 0}



Simple example 

§  How to calculate       ?  

§  Define         on                by 

•  If       is not in the past of  0:  

•  If  0 is not in the past of  

    

§   The powers        are well defined because the 

wavefront set satisfies Hörmander’s condition 

§          is extended from                     to   

 

Dn
F

Dn
F R4\{0}

Dn
±

Dn
F D(R4\{0}) D(R4)

D

n
F = D

n
+ on {x; t > 0 or x

2
< 0}

D

n
F = D

n
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2
< 0}

x

x



Wave-front set 

§  Wightman propagator 

§  Feynman propagator 

WF(D+)

WF(DF )



Extension Ambiguity 

§  Causality determines        on   

§  Then,         is extended from                     to 

§  This extension is not unique 

§  Two extensions differ by a distribution supported on 

the origin 

§  If  the degree of  divergence of  the extension is 

minimum, then the degree of      is   

Dn
F

D(R4\{0}) D(R4)

R4\{0}

Dn
F

(Dn
F )

0 = Dn
F + P (@)�0

P 2n� 4
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Geometric lemma 

§  Popineau and Stora (1982), Bergbauer (2004) 

§  Let            be a poset (a set with a partial order)  

§  Let     be a proper subset of    

§  Let  

§  Then, 

      where 

I {1, . . . , n}

CI = {(x1, . . . , xn) 2 S

n
;xi ⌦ xj for i 2 I, j 2 I

c}

[

I

CI = Sn\Dn

Dn = {(x1, . . . , xn) 2 S

n;x1 = · · · = xn}

(S,6)



renormalization 

§  For every    , build a linear map 

§       is uniquely determined if  all      are different   

§  Induction on the number of  points  

§  Start with               and 

§  On each                  causality implies 

 

§  By Stora’s lemma, this determines     on  

§  Extend      to  

T

�Qn
i=1 Hi(xi)

�
= T

�Q
i2I Hi(xi)

�
? T

�Q
j2Ic Hj(xj)

�

T : C1(Mn)⌦ R['1, . . . ,'n] ! D0(Mn)⌦ R['1, . . . ,'n]

CI ⇢ Mn

T Mn\Dn

T Mn

T xi

T (�k) = �kT (1) = 1

n

n



determination of Time-Orderings 

§  Problem: determine all ways to extend the time-

ordering to coinciding points 

§  A renormalization group acts freely and transitively on 

the time orderings  

§  Contributions of  
•  Stueckelberg and Peterman (1953) 
•  Bogoliubov and Shirkov (1955) 

•  Popineau and Stora (1982) 
•  Hollands and Wald (2003) 

•  Brunetti and Fredenhagen (2009) 
•  Borcherds (2011) 



Two points 

§  A time-ordering on   

§  On 

  

§  On  

     where 

T : C1(M2)⌦ R['1,'2] ! D0(M2)⌦ R['1,'2]

M2

C{1} = {(x1, x2);x1 is not in the past of x2}

C{2} = {(x1, x2);x2 is not in the past of x1}
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Two points 

§  On   

     where                                       on 

        and                                        on  

§  The extension of                 boils down to the extension 

of   

§  This extension must be done consistently  

C{1} [ C{2} = M2\D2

DF (x1, x2) = D+(x1, x2) C{1}

DF (x1, x2) = D+(x2, x1) C{2}

T ('n
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Di
F
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n
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F



Two points 

§  Difference between two extensions  

§  In terms of  extensions of   

§  Wick expansion for the difference 

§      is supported on the diagonal 

§  Thus,  

T 0 � T = ⇤

h0|⇤('n
1'

n
2 )|0i = n!

�
(Dn

F )
0 �Dn

F
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F
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2

⇤

T � ⇤ = T 0 � ⇤ = ⇤



Three points 

§  Difference between two extensions  

 

§  Example:  

§  Result 

     where                 is supported on the diagonal 

T (ABC) = T (A) ⇥ T (BC) on C1,

= T (B) ⇥ T (AC) on C2,

= T (C) ⇥ T (BC) on C3,

= T (AB) ⇥ T (C) on C12,

= T (AC) ⇥ T (B) on C13,

= T (BC) ⇥ T (A) on C23

T �(ABC) = T �(A) � T �(BC)
= T �(B) � T �(AC)
= T �(C) � T �(BC)
= T �(AB) � T �(C)
= T �(AC) � T �(B)
= T �(BC) � T �(A)

T �(A) � T �(BC) = T (A) � T (BC) + T (A) � �(BC)
= T (ABC) + T (A�(BC)) on C1

T �(ABC) = T (ABC) + T
�
A�(BC)

⇥
+ T

�
B�(AC)

⇥
+ T

�
C�(AB)

⇥
+ �(ABC)

⇤(ABC) D3



Example 

§  For the example of  the      theory  

 

 

 

 

§  Subtle problem due to balanced derivatives (Dütsch 

and Fredenhagen, 2004) 

⇤
⇣
'

4(x1) . . .'
4(xn)

⌘
=

Z
dx�(x1 � x) . . . �(xn � x)

⇣
Cn1'

2(x) + Cn2'
4(x) + Cn3'(x)⇤'(x)

⌘

'4



General case 

§  For                                      and                          define  

 

§  Let 

 

§  Then 

§  All     are supported on the diagonal  

§  Boundary conditions 

A = H1(x1) . . .Hn(xn) I ⇢ {1, . . . , n}
A|I =

Y

i2I

Hi(xi)

e⇤⇤(A) = ⇤(A) +
1X

k=2

X

I1[···[Ik=I

⇤(A|I1) . . .⇤(A|Ik)

T 0(A) = T
�
e⇤⇤(A)

�

⇤

⇤(1) = 0 ⇤('n) = 'n



Ambiguity of the s-matrix 

§  The S-matrix corresponding to the interaction           is  

                               where 

§  For another time-ordering (another renormalization) 

 

§  A change of  renormalization amounts to a 

modification of  the interaction 

  

§  Renormalization provides a way to describe a 

modification of  the interaction 

H(x)

S = T (eA)
A = �i

Z
H(x)g(x)dx

S0 = T 0(eA) = T (e⇤(eA))

A ! A0 = e⇤(eA) = A+
1X

n=2

1

n!
⇤(An)



Renormalization group 

§  The transition from one extension to the other is 

described by the action of     :   

§  The set of      forms a group for the product  

§  This renormalization group acts freely and transitively 

on the time-ordered products 

§   It contains all the renormalization groups used in 

physics (Brunetti, Dütsch, Fredenhagen 2009) 

⇤ T 0 = T � e⇤⇤

⇤

⇤0 • ⇤ = ⇤0 � e⇤⇤



conclusion 

§  Renormalization is naturally a change of  the 

interaction 

§  Causality (or a poset) is crucial 

§  Gauge theory (Hollands 2008, Fredenhagen and 

Rejzner 2013) 

§  Gravitation (Brunetti, Fredenhagen, Rejzner 2013) 

§  Open problem: explicit calculation of  S-matrix 

elements (partition of  unity) 

 


