

Quantum Hoare Logic ... and Ghosts

Dominique Unruh RWTH Aachen, University of Tartu

Overview

• What are Hoare logics?

• What are quantum Hoare logics?

What about ghosts???

Chapter I

Hoare Logic

Hoare Logic

Relates precondition and postcondition of a program

$\{x = 1\}$ $x \coloneqq x + 1$ $\{x = 2\}$

"If memory initially satisfies x = 1, then memory afterwards satisfies x = 2"

Why Hoare Logic?

• Describe what a program does

• Reason about programs

 More abstractly: Understand processes with effects?

Specification of programs

$$\{set(x) = x_0\} \text{ quicksort} \\ \{set(x) = x_0 \land x \text{ sorted}\} \\$$

What about these?
How are they defined?
Easier: just predicates about values of variables

Example reasoning

$$\{ x = x_0 \land y = y_0 \}$$

$$x \leftarrow x + y$$

$$\{ x = x_0 + y_0 \land y = y_0 \}$$

$$y \leftarrow x - y$$

$$\{ x = x_0 + y_0 \land y = x_0 \}$$

$$x \leftarrow x - y$$

$$\{ x = y_0 \land y = x_0 \}$$

$$\{ x = y_0 \land y = x_0 \}$$

Rules

- Either axiomatic

 (rules define semantics of the language)
- Or proven sound
 (given a semantics of the language)

Chapter II

Quantum Hoare Logic

Quantum mechanics

Classical world

State of a system:

Quantum world

State of a system:

But also:

$$|123, 383, 633\rangle$$

$$\frac{1}{\sqrt{2}}|123, 383, 633$$

$$+\frac{1}{\sqrt{2}}|932, 503, 321\rangle$$

Quantum programs

- Have a memory that is quantum (with superpositions)
- Can do quantum operations (what physics tells us is allowed)
- E.g., speed-up due to "parallelism"
- Also just interesting from a logical point of view

Quantum programs (semantically)

- Take a quantum state ψ
- Return a new quantum state ψ'

A function from a Hilbert space to itself
 – (Usually "unitary", or "contractive")

• Example: **flipx** takes $|x, y, z\rangle$ to $|\neg x, y, z\rangle$

Quantum Hoare Logic

- Should describe the content of the memory
- Classically: a predicate
- Quantum: a subspace!

Example

$$X = |0\rangle \qquad X = |1\rangle$$

$$\left\{ span\{|0, y, z\rangle\} \right\} flipx \left\{ span\{|1, y, z\rangle\} \right\}$$

- Explicitly writing subspaces: Horrible
- Need nice syntax
- von Neumann / Birkhoff:
 - Operations like Λ and \vee and "complement"
 - Similar, but not the same as a Boolean algebra

Example II

$$\{X = |0\rangle \land Y = |1\rangle\} flipx$$
$$\{X = |1\rangle \land Y = |1\rangle\} flipx$$
$$\{X = |0\rangle \land Y = |1\rangle\}$$

- Powerful approach
- Bottom-up reasoning
- Predicates as subspaces: Natural mathematical structure

Chapter III

Limitations of subspaces

Trying to express: "x is classical" $x = |0\rangle \lor x = |1\rangle$ Also contains $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$. Not classical!

Trying to express: "*x* is uniformly random" Impossible.

Trying to express: "*x* not entangled" Impossible.

Ghost Variables

Hypothetical "existential" quantum variables

Solves the aforementioned problems

Leads to a richer QHL

Ghost Variables – classically

$$\{ x = g^2 \} \quad x \leftarrow 4x \quad \{ x = g^2 \}$$

Meaning: for some value of g , this is true

"If x is a square before, x is a square afterwards."

$$\{\exists g. x = g^2\} \ x \leftarrow 4x \ \{\exists g. x = g^2\}$$

Ghost Variables – quantumly

$$\{xg = |\Phi^+\rangle\} \text{ Hadamard } \{xg = |\Phi^+\rangle\}$$

Meaning: for some value of g ,
this is true
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

- If $xg = |\Phi^+\rangle$, and g is removed, then x is uniformly distributed qubit
- Program memory satisfies xg = |Φ⁺⟩
 ⇔
 x is uniformly distributed qubit

Summary (so far)

Ghost variables: "Existential" quantum variables

- Cannot be simulated with ∃
- Can express:
 - Distribution of x (not just uniformity)
 - Classicality of x
 - (" $x =_{cl} g$ " for "unentangled" ghost)
 - Separability of x

(" $x =_{qu} g$ " for "unentangled" ghost)

Example

Consequence: Classical sampling can be treated as a <u>derived</u> concept!

Ghost Variables → **Minimalism**

Conclusion

Hoare logics: Describe what a program does

Quantum Hoare logics:

Describe what a quantum program does

Ghosts:

Capture richer properties through hypothetical variables

Questions?

