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Abstract

This thesis has two objectives. The first objective is to introduce a notion of
equivalence for singular foliations that preserves their transverse geometry and
is compatible with the notions of Morita equivalence of the holonomy groupoids
and the transverse equivalence for regular foliations that appeared in the 1980’s.

The second one is to describe the structures behind quotients of singular
foliations and to connect these results with their associated holonomy groupoids.

We also want to give an introduction to the notion of singular foliations as given
in [AS09], as well as to their relation with Lie groupoids and Lie algebroids.
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Beknopte samenvatting

Deze thesis heeft twee doelstellingen. De eerste bestaat erin een notie
van equivalentie voor singuliere foliaties in te voeren, die hun transversale
meetkunde bewaart. Deze equivalentierelatie wordt zodanig gedefinieerd dat de
holonomiegroepoïden geassocieerd met equivalente singuliere foliaties Morita-
equivalent zijn. Tevens veralgemeent ze noties van transversale equivalentie
voor reguliere foliaties die in de jaren ’80 verschenen.

Het twede doel van deze thesis is het beschrijven van de achterliggende structuren
van quotiënten van singuliere foliaties.

We willen ook een inleiding geven op het begrip "singuliere foliaties", dat
verscheen in [AS09], alsook de relatie tussen singuliere foliaties enerzijds, en Lie
groepoïden en Lie algebroïden anderzijds bespreken.
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Introduction

I started my PhD with the project of quotients of singular foliation, a subject
suggested by my adviser Marco Zambon. At that time, he gave me to study
an article by Prof. Androulidakis and Prof. Skandalis [AS09], which I started
reading right away. Trying to understand the proofs of every theorem we
discovered step by step new properties and relations. After many discussions
with him and my colleagues, this thesis was born.

This thesis studies properties of singular foliations, focusing on their associated
holonomy groupoids. It tries to be a self contained work and to give an
introduction to the notions of singular foliations, Lie algebroids and Lie
groupoids, as well as their relations.

The structure

The first three chapters provide an introduction to many important notions
for this thesis, such as singular foliations, bisubmersions, Lie groupoids, Lie
algebroids and Morita equivalence. The results of this thesis lie in the last two
chapters, the fourth and the fifth ones.

The first chapter of this thesis is an introduction to singular foliations in the
sense of the article [AS09]. Here we also explain in detail many of the notions
from different points of view. The sections with new results are §1.2, §1.4 and
§1.5.

In the second chapter we give an introduction to bisubmersions, which first
appeared in [AS09] and inspired our notion of Hausdorff Morita equivalence for
singular foliations, which we also present in the same chapter. The sections
with new results are §2.1 §2.3, §2.4 and §2.5. In §2.1 we give a new proof of an
old result. In §2.3, §2.4 and §2.5 we give an introduction of Hausdorff Morita
equivalence for singular foliations, as in [GZ19] by Marco Zambon and myself.
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2 INTRODUCTION

The third chapter gives the preliminaries for Lie groupoids, Lie algebroids and
Morita equivalence. We also connect these objects with singular foliations.
There are no new results but §3.4 and §3.5 are particularly important.

The fourth chapter gives an introduction to the holonomy groupoid of a singular
foliation, as in article [AS09]. It also relates our notion of Hausdorff Morita
equivalence for singular foliation with the classical notion of Morita equivalence
for the holonomy groupoids. The sections with new results are §4.3, §4.4 and
§4.5, the last one being one of the most important sections of this thesis.

In the fifth chapter we show the results we obtained for the quotients of singular
foliations. The sections with new results are §5.1 and §5.4.

The motivation

This work is motivated mainly by the theory of foliations and Poisson geometry.

Foliations

The notion of regular foliation is widely studied in differential geometry, to the
extent that it regularly appears in general master courses in mathematics. A
regular foliation can be seen as either one of two equivalent notions: integrable
distributions or regular smooth partitions.

Definition. An integrable distribution D on a manifold M is a
vector subbundle of the tangent bundle TM , such that it is involutive i.e.
[Γ(D),Γ(D)] ⊂ Γ(D).

Definition. A smooth partition on M is a partition {Li}i∈I of M , where
every class Li is a connected immersed1 submanifold of M called a leaf; and
such that for each p ∈ M and v ∈ TpM tangent to the leaves, there exists a
vector field X ∈ X(M) with X(p) = v and tangent to every leaf. A smooth
partition is regular if every leaf has the same dimension.

The notions of integrable distribution and regular smooth partition are equivalent
because of the Frobenius theorem. Given a regular smooth partition, one can
get an integrable distribution using the tangent spaces of the leaves. Moreover
given an integrable distribution D one can follow the flows of the vector fields
in Γ(D) ⊂ X(M) and get a regular smooth partition of M .

1In this thesis any immersion is considered to be injective.
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An important notion for this thesis is the holonomy groupoid of a foliation.
In the case of regular foliations, this groupoid was introduced by Ehresmann
[Ehr65] and Winkelnkemper [Win83]. Its construction can be seen in section
3.2 of this thesis.

On the one hand, the holonomy groupoid encodes the information of the
leaf space (which is typically not smooth) and the holonomy groups, so this
feature gives a geometric motivation for its study. On the other hand, in
non commutative geometry, it gives a geometric interpretation for certain C∗-
algebras. Every Lie groupoid has an associated C∗-algebra [Ren80] therefore
every regular foliation has an associated C∗-algebra given by its holonomy
groupoid. This construction was given by A. Connes in [Con82].

A well known fact is that any commutative C∗-algebra is isomorphic to the
space of functions on a topological space. This gives a geometric interpretation
of an, in principle, algebraic object. The C∗-algebra defined by A. Connes to a
regular foliation is usually non commutative, giving a geometric interpretation
for a more general kind of C∗-algebras. Moreover, using this construction, in
the articles [Con79], [CS84] and [Con82] the authors developed a longitudinal
psedo-differential calculus and an index theory for regular foliations.

One can also generalize these constructions for singular foliations. Here the
term “singular” comes in when we allow smooth partitions whose leaves vary in
dimension. Similarly to the Frobenius theorem, the Stefan-Sussmann theorem
states that any smooth partition of M gives a unique “singular integrable
distribution” on M and vice-versa. We will not discuss this characterization.
The reader can check [RS13, §2.3] for more details.

In this thesis we define singular foliations as Androulidakis and Skandalis in
[AS09]. By the Stefan-Sussmann theorem, one can check that this definition
gives indeed a smooth partition of M . However, this process is not reversible.
In chapter 1 we will give a proper introduction to this object.

Definition. A singular foliation on a manifoldM is a C∞(M)-submodule F
of the compactly supported vector fields Xc(M), closed under the Lie bracket and
locally finitely generated. A foliated manifold is a manifold with a singular
foliation.

Note that, the above definition generalizes canonically the notion of integrable
distribution. Indeed, for any integrable distribution D ⊂ TM there exists
a singular foliation F := Γc(D) ⊂ Xc(M), and for any singular foliation
F ⊂ X(M), satisfying some regularity condition, one can get an integrable
distribution D ⊂ TM .

Although foliated manifolds as in the above definition are recent objects, they
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have been studied by many people, as the reader can see by the following
articles: [AS09], [AZ13], [AZ14], [AZ16], [BBLM], [Deb01], [Deb13], [LGLS18],
[Wan18].

In [AS09] the authors generalized the holonomy groupoid to any foliated
manifold. We will review this construction and guide the reader step by step in
section 4.1. Even though in many cases this groupoid fails to be smooth (i.e, Lie),
it has a partial smooth structure [Deb13]. By using this partial smooth structure,
Androulidakis and Skandalis defined a C∗-algebra of a foliated manifold. This
was an important step towards the generalization of the work of A. Connes to
the singular case.

Poisson geometry, C∗-algebras and Morita Equivalence

Modern Poisson geometry, which takes its roots in the classical work of Poisson in
the 19th century on classical mechanics, was established following the pioneering
work of Weinstein [Wei85] in 1983, and it has become an active research field
with connections to a variety of fields, such as algebra, differential geometry
and mathematical physics.

Any Poisson manifold (M,π) has an associated Lie algebroid [CdSW99], namely
the cotangent bundle of M with anchor π] : T ∗M → TM ;α 7→ π(α,−). This
Lie algebroid induces a foliated manifold (M,π](Ω1

c(M))) where each leaf has a
symplectic structure. Moreover, this Lie algebroid can sometimes be integrated
into a source simply connected symplectic Lie groupoid ([CF04]) and the orbits
of this Lie groupoid coincide with the symplectic leaves of the singular foliation.

Poisson geometry is also related to the study of quantization in physics
([Dir47], [Kos77], [BFF+78b] and [BFF+78a]). The goal of quantization is
to relate classical mechanics, described in mathematical terms by Poisson
geometry ([CdS01] and [CdSW99]), and quantum mechanics, described by
non-commutative C∗-algebras.

A notion which lies at the intersection of the theories of C∗-algebras, Poisson
manifolds and Lie groupoids is the notion of Morita equivalence. This notion
first appeared in algebra as a weak version of isomorphisms, in the sense that two
C∗-algebras are Morita equivalent if their categories of modules are equivalent.
This is an important notion because for some cases one does not care for the
algebraic object, but for the possible actions (or representations) of it.

Morita equivalence was later extended to Lie groupoids and Poisson manifolds.
In [CdSW99] it is explained in more detail how the concepts of Morita
equivalence for these three different objects are related: for example, if two Lie
groupoids are Morita equivalent, then their corresponding C∗-algebras are also



INTRODUCTION 5

Morita equivalent. In this thesis we do not address C∗-algebras. We will focus
on groupoids and then many results for their C∗-algebras follow immediately.

The notion of Morita equivalence for Lie groupoids has a geometric interpretation.
Namely, if two Lie groupoids G and H are Morita equivalent, their orbitspaces
(i.e. their spaces of orbits) are homeomorphic to the same topological space S
and their isotropy Lie groups are isomorphic. Hence one can regard G and H
as equivalent smooth structures (or atlases) for S. This has consequences for
foliated manifolds, namely if G ⇒M is a source connected Lie groupoid with
associated foliated manifold (M,F), then the orbitspace of G coincides with the
leafspace of (M,F), and therefore G can be seen as a “smooth structure” for
the leafspace of (M,F).

One of the goals of this thesis is to generalize the notion of Morita equivalence
from Poisson manifolds, Lie groupoids and C∗-algebras to the setting of foliated
manifolds, and to relate it with the notion of transverse equivalence given by
Molino in [Mol88].

The results

This thesis has two main results. The first one is about Morita equivalence of
singular foliations. The second one is about quotients of foliated manifolds and
of their associated holonomy groupoids.

Hausdorff Morita equivalence of singular foliations

The transverse geometry of a regular foliation was studied in the 1980’s and
1990’s. Haefliger stated that a property of a regular foliation is transverse if
it can be described in terms of the Morita equivalence class of its holonomy
groupoid (see the first paragraph of [Hae84, §1.5]).

Molino introduced various notions of transverse equivalence of regular foliations
(see [Mol88, §2.7] and [Mol94, §2.2 d]). His notion of transverse equivalence
requires that the pullbacks of the foliations to suitable spaces agree, and does
not make any reference to the holonomy groupoid.

In the same spirit as Molino, M. Zambon and I introduced in [GZ19] a definition
of Morita equivalence of singular foliations. In section 2.3 we give an introduction
to this notion.
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One of the results in this thesis is that Morita equivalence of singular foliations
have many invariants, which should be regarded as constituents of the “transverse
geometry” of a singular foliation:

Theorem. If two singular foliations are Hausdorff Morita equivalent, then:

a) the leaf spaces are homeomorphic,

b) the isotropy Lie groups (and isotropy Lie algebras) of corresponding leaves
are isomorphic,

c) the representations of corresponding isotropy Lie groups on normal spaces
to the leaves are isomorphic.

Notice that this is analogous to the Morita equivalence of Lie groupoids, for which
the space of orbits, the isotropy Lie groups and their normal representations
are a complete set of invariants [dH13, theorem. 4.3.1].

Several geometric objects have singular foliations associated to them. In section
4.5 we will prove the following statements:

Theorem. If two source connected Hausdorff Lie groupoids, two Lie algebroids
[Gin01, §6.2] or two Poisson manifolds [Xu91] are Morita equivalent, then their
underlying singular foliations are Hausdorff Morita equivalent.

Theorem. If two singular foliations are Hausdorff Morita equivalent then their
holonomy groupoids are Morita equivalent (as open topological groupoids).

For regular foliations – and more generally for projective foliations – the
holonomy groupoid is a source connected Lie groupoid. Therefore, in this
case, Hausdorff Morita equivalence of singular foliations coincides with Morita
equivalence of their associated holonomy groupoids (under Hausdorffness
assumptions).

From the above it is clear that the notions of Morita equivalence for singular
foliations and Morita equivalence for the associated holonomy groupoids are
closely connected. We emphasize that our definition of Hausdorff Morita
equivalence is expressed in terms of the singular foliation alone, without making
any reference to the associated holonomy groupoid, and as such, it has the
advantage of being easy to handle.

Quotients of singular foliations

Let (P,F) be a foliated manifold and π : P →M a surjective submersion with
connected fibers (in particular, M is the quotient of P by the regular foliation
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given by the fibers of π). Under mild conditions, F can be “pushed forward”
along π to a singular foliation FM on M .

As recalled earlier, every singular foliation has a canonically associated
topological groupoid, called holonomy groupoid [AS09]. Since the singular
foliation FM is obtained from F by a quotient procedure, it is natural to
wonder whether the holonomy groupoid H(FM ) of FM is also a quotient of the
holonomy groupoid H(F). In Chapter 4, Theorem 5.1.3 we show that this is
always the case: there is a canonical surjective morphism

Ξ: H(F)→ H(FM ).

We then refine the above result in the case of Lie group actions. That is, we
assume that a Lie group G acts freely and properly on P preserving the singular
foliation F , and π is the projection to the orbit space M = P/G. The action
lifts naturally to a G-action on H(F), but a simple dimension count shows that
the quotient can not be isomorphic to H(FM ) in general. In §5.3 we show that
when F contains the infinitesimal generators of the G-action, there is a natural
action of a semidirect product Lie group GoG on H(F) – not by Lie groupoid
automorphisms – with quotient H(FM ). Remarkably, this is a group action in
the category of Lie groupoids (see Theorem 5.3.7).

In the general case when F does not necessarily contain the infinitesimal
generators of the G-action, it is no longer true that the Ξ-fibers are given by
orbits of a Lie 2-group action. In §5.4 we describe the fibers of Ξ as orbits
of a certain groupoid action on H(F) (see Prop. 5.4.5). Under additional
assumptions, this can be promoted to a Lie group action. In the end of §5.4 we
show that there is a canonical Lie ideal h of g which gives rise to a Lie 2-group
H o G and a Lie 2-group action on H(F) whose orbits are contained in the
Ξ-fibers (see Prop. 5.4.10). The concrete form of this Lie 2-group action is
inspired by a special case, in which F contains the infinitesimal generators of
the G-action (hence H = G). Indeed in that case we recover the Lie 2-group
action given in §5.3, as we explain in Prop. 5.4.12.

Funding

This thesis was partially supported by IAP Dygest and by the FWO under EOS
project G0H4518N.





Chapter 1

Singular foliations

The objective of this chapter is to introduce singular foliation in the sense of
the article [AS09]. In the first section we introduce this definition, its properties
and give some examples.

In the second and third sections we introduce the definitions of transversal maps
to a foliation, the pullback of a foliation under a transversal map and under a
submersion, and the local description of any singular foliation. In the fourth
section we construct the product of foliations and show some of their properties
with the pullbacks.

In the last section of this chapter we give a different but equivalent
characterization for foliations, using sheaves, and motivate its advantages.

1.1 Definition of singular foliations

This subsection is an introduction to the definition of singular foliation given
by I. Androulidakis and G. Skandalis in [AS09] therefore most of the result can
be found there. We will make clear when there are new results.

Definition 1.1.1. A C∞c (M)-submodule F ⊂ Xc(M) is finitely generated
if there exists a finite set of vector fields Y 1, ..., Y r ∈ X(M), called generators,
such that

F = 〈Y 1, ..., Y r〉C∞c (M),

i.e. F is the C∞c (M)-linear span of the generators.

9



10 SINGULAR FOLIATIONS

Note that the generators of F are not required to be in F and their support is
not necessarily compact.

Definition 1.1.2. A submodule F ⊂ Xc(M) is locally finitely generated if
every point x ∈M has a neighborhood U ⊂M such that

ι−1
U F := {X|U : X ∈ F and supp(X) ⊂ U},

is finitely generated as a C∞c (U)-module.

Remark 1.1.3. The notation “ι−1
U F” comes from the pullback under the

inclusion map ιU : U →M given in definition 1.3.1.

The following lemma will be useful later. In particular it states that finitely
generated modules can be restricted to smaller open sets and glued finitely
many times.

Lemma 1.1.4. Let F ⊂ Xc(M) be a submodule.

(a) If F is finitely generated, then ι−1
U F is finitely generated for all open

subsets U ⊂M .

(b) If U, V ⊂ M are open subsets such that ι−1
U F and ι−1

V F are finitely
generated, then ι−1

U∪V F is finitely generated.

(c) F is locally finitely generated if and only if, for all ρ ∈ C∞c (M), the
submodule

ρF := {ρX | X ∈ F} ⊂ Xc(M)

is finitely generated.

Proof. (a) Using that ι−1
U F = 〈F〉C∞c (U), one easily sees that that the restrictions

of generators of F to U are generators of ι−1
U F .

(b) Let X1, ..., Xr ∈ X(U) be generators of ι−1
U F and Y 1, ..., Y s ∈ X(V ) of

ι−1
V F , and choose a partition of unity {ρU , ρV } subordinate to the open cover
{U, V } of U ∪ V . We show that ρUX1, ..., ρUX

r, ρV Y
1, ..., ρV Y

s ∈ X(U ∪ V )
(or rather their extension by zero to U ∪ V ) are generators of ι−1

U∪V F , i.e. that
ι−1
U∪V F is equal to the C∞c (U ∪ V )-linear span of the generators.

On the one hand, if f ∈ C∞c (U ∪ V ) then fρU ∈ C∞c (U), since supp(fρU ) =
supp(f) ∩ supp(ρU ) and a closed subset of a compact set is compact. Similarly,
fρV ∈ C∞c (V ). Thus, using that ι−1

U F ⊂ ι−1
U∪V F and ι−1

V F ⊂ ι−1
U∪V F , we see

that any C∞c (U ∪ V )-linear combination of the generators is an element of
ι−1
U∪V F .
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On the other hand, let Z ∈ ι−1
U∪V F and write Z = ρUZ + ρV Z. For the reason

explained above, ρUZ ∈ Xc(U) and ρV Z ∈ Xc(V ). Choose functions λU ∈
C∞c (U) and λV ∈ C∞c (V ) such that λU |supp(ρUZ) = 1 and λV |supp(ρV Z) = 1,
we have that Z = ρUλUZ + ρV λV Z. Finally, λUZ =

∑r
i=1 fiX

i for some
f i ∈ C∞c (U) and λV Z =

∑s
i=1 giY

i for some gi ∈ C∞c (V ), and so

Z =
r∑
i=1

fi ρUX
i +

s∑
i=1

gi ρUY
i.

(c) We begin with the forward implication. Let ρ ∈ C∞c (M). There exists an
open subset U ⊂ M containing supp(ρ) such that ι−1

U F is finitely generated,
namely we may choose a finite covering of supp(ρ) by open subsets U1, ..., Ur
such that all restrictions ι−1

Ui
F are finitely generated and then apply part (b) a

finite number of times to conclude that ι−1
U1∪...∪UrF is finitely generated. It is

now easy to see that ρF = ρFU and hence ρF is finitely generated.

For the reverse implication, given x ∈ M , we may construct an open
neighborhood U of x and a ρ ∈ C∞c (M) such that ρ|U = 1, and we immediately
see that ι−1

U F = ρ(ι−1
U F) = ι−1

U (ρF), which is finitely generated by part (a).

Definition 1.1.5. A singular foliation on a manifold M (in the sense of
Androulidakis and Skandalis [AS09]) is a locally finitely generated submodule
F ⊂ Xc(M) that is involutive, i.e. [F ,F ] ⊂ F . A manifold with a singular
foliation is called a foliated manifold.

Example 1.1.6. By the Frobenius theorem, any regular foliation has an
associated integrable distribution D ⊂ TM . Then F := Γc(D) is a singular
foliation.

Given a set of vector fields X1, . . . Xn ∈ X(M), its span F = 〈X1, . . . , Xn〉C∞c (M)
is a singular foliation if and only if it is involutive. A particular example where
this happens is the following:

Example 1.1.7. Let g be a Lie algebra acting infinitesimally on M . This
action consists of a vector bundle map ρ : Ag → TM which preserves the Lie
bracket, where Ag := g ×M . Given a basis v1, . . . , vk for g the vectorfields
Xi(p) := ρ(vi, p) ∈ X(M) span a singular foliation Fg := 〈X1, . . . , Xk〉C∞c (M).

Example 1.1.8. In section §3.3, particularly in 3.3.17, we will see that any
Lie algebroid canonically defines a singular foliation. Moreover in example 3.3.8
we will see that any Lie groupoid has an associated Lie algebroid and therefore
a singular foliation.
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One of the motivations for definition 1.1.5 is that it gives an integrable singular
distribution and, by the Stefan-Sussmann theorem [RS13, §2.3], a smooth
partition of M . Another motivation for definition 1.1.5 is that it also allows
us to define the holonomy groupoid for a singular foliation, as we will show
in chapter 4. A drawback is that not any singular integrable distribution is a
singular foliation, nevertheless singular foliations are general enough to contain
many key examples, for instance: 1.1.6 and 1.1.8.

For a singular foliation there are certain interesting spaces given point wise.
These spaces measure the regularity of the foliation around a point.

Definition 1.1.9. Let (M,F) be a foliated manifold and x ∈ M . Denote
Ix := {f ∈ C∞(M) : f(x) = 0}. We denote:

The tangent of F at x by: Fx := {X(x) : X ∈ F} ⊂ TxM .

The fibre of F at x by: Fx := F/IxF .

Note that the evaluation map evx : Fx → Fx at the point x induces a short
exact sequence of vector spaces:

0→ ker(evx)→ Fx → Fx → 0.

Moreover, the Lie bracket on M descends canonically to a Lie bracket on
ker(evx), giving a Lie algebra structure on it.

Definition 1.1.10. The space gFx := ker(evx) is called the isotropy Lie
algebra of F at x.

The tangent space Fx gives a way to determine if F is a regular foliation, as it is
shown in the following corollary, which is a direct consequence of the Frobenius
theorem:

Corollary 1.1.11. F is a regular foliation if and only if the space Fx has
constant dimension for all x ∈M . This also implies Fx ' Fx and gFx = 0.

Definition 1.1.12. For the rest of this thesis a regular foliation on a
manifold M is a singular foliation F on M such that the spaces Fx have
constant dimension for all x ∈M .

The fiber Fx is related to a minimal amount of generators for F near x, as the
following lemma (proved in [AS09]) shows:

Lemma 1.1.13. Let {X1, . . . Xn} ∈ F be a finite subset and fix x0 ∈ M . If
the class of elements in {X1, . . . Xn} are a basis for Fx0 then there exists a
neighborhood U ⊂M of x0 such that {X1, . . . Xn} generates ι−1

U F .
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Proof. Because F is locally finitely generated, there exists a neighborhood
V of x0 and vector fields Y1, . . . , YN spanning ι−1

V F . Because the classes of
X1, . . . , Xn in Fx0 are a basis there exists a unique matrix A ∈Mn×N (R) such
that:  (Y1)x0

...
(YN )x0

 = A ·

(X1)x0
...

(Xn)x0

 ,
where (−)x0 denotes the class in Fx0 . Then using that Y1, . . . , YN are generators
near x0, there exists B ∈ C(MN×N (R)) such that B(x0) = 0 andY1

...
YN

−A ·
X1

...
Xn

 = B

Y1
...
YN

 .
Therefore,

A ·

X1
...
Xn

 = (Id−B)

Y1
...
YN

 .
Using the smoothness of B and that B(x0) = 0 there must exists a neighborhood
U ⊂ V of x0 such that Id−B is invertible. Finally on U :Y1

...
YN

 = (Id−B)−1A ·

X1
...
Xn

 .
which proves that X1, . . . , Xn are generators of ι−1

U F .

This fiber Fx also determines whether or not F is a projective module. Recall
that, an C∞c (M)-module F is projective if there is another C∞c (M)-module
Q such that F ⊕ Q is a free C∞c (M)-module. The Serre-Swan theorem says
that any C∞c (M)-module is projective if and only if there exists a vector bundle
A→ M such that F ∼= Γc(A) as C∞c (M)-modules (the free C∞c (M)-modules
are given by trivial vector bundles over M).

This fact says that a projective foliation F behaves quite well (see [Deb01],
where they are called almost regular foliations). If you see the definition of Lie
algebroids 3.3.1, the vector bundle A associated to F acquires canonically a Lie
algebroid structure for which the anchor map is injective on an open dense set.

Lemma 1.1.14. Fx has constant dimension for all x ∈M if and only if F is
a projective module.
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Proof. (Sketch) If F is projective, there exists a vector bundle A→M whose
module of sections are isomorphic to F . Then dim(Fx) = dim(Ax) which is
constant.

For the converse suppose dim(Fx) is constant. Then one can create a vector
bundle A with the condition Ax ∼= Fx. Finally Γc(A) ' F .

An important characteristic of singular foliations is that they give a singular
distribution on and a smooth partition of their underlying manifolds.
Nevertheless, the singular foliation contains more information than the smooth
partition, for example:

In R2 we can choose

F0 := 〈x∂x + y∂y, y∂x − x∂y〉C∞c (M) ,

F1 := 〈x∂x, y∂y, y∂x, x∂y〉C∞c (M) .

Both foliations give the smooth partition L0 = {(0, 0)} and L1 = (R2−{(0, 0)})
but they do not define the same submodule. In fact, looking at the dimensions
of the fibers at the origin we see that dim(F0

(0,0)) = 2 and dim(F1
(0,0)) = 4,

which implies that F0 is a projective module whereas F1 is not.

1.2 Transversal maps

Let P,M be manifold and π : P →M a smooth map. Consider the following
maps of sections:

dπ : X(P )→ Γ(P, π∗TM), Y 7→ dπY,

π∗ : X(M)→ Γ(P, π∗TM), X 7→ X ◦ π.

A definition of transversality given in [AS09] is the following:

Definition 1.2.1. A map π : P →M is transversal to a foliation F on M if
the canonical map:

Xc(P )⊕ 〈π∗F〉C∞c (P ) → Γc(π∗TM);Y ⊕ ξ 7→ (dπY ) + ξ (1.1)

is onto.
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This condition is a point wise property. This means that it is equivalent to the
following statement, which was suggested by Henrique Bursztyn in his article
[BBLM]:

Proposition 1.2.2. A map π : P → M is transversal to a foliation F on M
if and only if for all p ∈ P the following condition is satisfied:

Img(dpπ) + Fp = Tπ(p)M, (1.2)

where Fp := {X(p) : X ∈ F}.

Proof. Transversal ⇒ condition (1.2): Take arbitrary p ∈ P and z ∈
Tπ(p)M . There is a section Z ∈ Γc(π∗TM) such that Z(p) = z. Using
tranversality in equation (1.1), there exist a section Y ∈ Xc(P ), elements
Xi ∈ F and gi ∈ C∞c (P ) such that

dπ(Y ) +
∑
i

giπ
∗Xi = Z.

Applying this formula to the point p we get:

dpπY +
∑
i

gi(p)Xi(π(p)) = Z(p) = z.

Denote X := Σigi(p)Xi ∈ F , then dpπY +X(π(p)) = Z(p) = z. Because p and
z are arbitrary we get condition (1.2).

Condition (1.2) ⇒ transversal: Take an arbitrary p ∈ P , there exists a local
frame {Yi} for TP around p and some local generators {Xj}’s for F nearby
π(p). Using the condition 1.2 we get that the {dpπYi} and the {Xj(π(p))} span
Tπ(p)M . It is possible to choose among the dpπYi’s and the Xj(π(p))’s a basis
for Tπ(p)M . Because of the regularity of π∗TM as a vector bundle over P the
chosen dπYi’s and π∗Xj ’s form a local frame of π∗TM nearby p. Therefore
for each p there exists a neighborhood Up, some vectorfields Y pi ∈ X(P ) and
Xp
j ∈ F such that the dπY pi and the π∗Xp

j form a basis for π∗TM |Up .

Take Z ∈ Γc(π∗TM). For each p ∈ supp(Z) we find a Up, dπY pi and π∗Xp
j as

in the last paragraph. There exist unique smooth functions gpi , g
p
j on Up such

that:
Z|Up =

∑
i

gpi (dπY pi ) +
∑
j

gpj (π∗Xp
j ). (1.3)

Because supp(Z) is compact, there exist finitely many Up that cover
supp(Z), take Uk’s as this finite cover for supp(Z) and gki , g

k
j , dπY

k
i , π

∗Xk
j
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the correspondent functions and vector fields satisfying equation (1.3) for each
Uk. Take a partition of unity fk’s subordinate to the Uk’s. Therefore, Z can be
written as the following finite sum of elements:

Z =
∑
i,k

fkg
k
i (dπY ki ) +

∑
j,k

fkg
k
j (π∗Xk

j ),

= dπ

∑
i,k

fkg
k
i Y

k
i

+
∑
j,k

fkg
k
j (π∗Xk

j ),

where (Σfkgki Y ki ) ∈ Xc(P ) and (Σfkgkj (π∗Xk
j )) ∈ 〈π∗F〉C∞c (P ). Then Z is in

the image of the canonical map (1.1). Finally, because Z is arbitrary, we have
transversality.

1.3 Pullbacks and push forwards

In this section we review the pullback foliation for transversal maps, as it was
first appeared in [AS09]. We will also give an easier description of this pullback
foliation when the map is a submersion and explain a local picture for singular
foliations.

We start with the definition of pullback foliation.

Definition 1.3.1. Let P,M be manifolds, F a foliation on M and π : P →M
a smooth map. Recall the maps of sections:

dπ : X(P )→ Γ(P, π∗TM), Y 7→ dπY,

π∗ : X(M)→ Γ(P, π∗TM), X 7→ X ◦ π.

The pullback foliation of F under π [AS09, proposition 1.10] is the submodule
of X(P ) given by:

π−1(F) :=
(
dπ−1

(
〈π∗F〉C∞c (P )

))
c
.

Let us explain the construction of the pullback foliation step by step: take the
image π∗(F), then make it a C∞c (P )-module 〈π∗F〉C∞c (P ), take the preimage
by the module map dπ and finally the compactly supported elements of it.

Proposition 1.3.2. Let P,M be manifolds, F a foliation onM and π : P →M
be a smooth map.
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1. π−1(F) is closed under the Lie bracket.

2. If π is transverse to F then π−1(F) is locally finitely generated.

3. Let S be a manifold and ϕ : S → P be a smooth map. The map ϕ is
transverse to π−1F if and only if π ◦ ϕ is transverse to to F and we have
(π ◦ ϕ)−1F = ϕ−1(π−1F).

Proof. Prop 1.10 and 1.11 in [AS09]

The following lemma contains a simplified description for the pullback foliation
when the transversal map is replaced by a submersion:

Lemma 1.3.3. Let (M,F) be a foliated manifold and π : P →M a submersion,
then

π−1(F) =
〈
(dπ)−1π∗(F)

〉
C∞c (P ) .

Note that the set (dπ)−1π∗(F) consists of the projectable vector fields in X(P )
going to F . Therefore π−1(F) is generated by projectable vector fields going to
F

Proof. Call H := π∗F . We will prove that:(
dπ−1

(
〈H〉C∞c (P )

))
c

=
〈
(dπ)−1H

〉
C∞c (P ) .

To prove this fact we will use double inclusion and the following facts:

• π is a submersion and therefore H ⊂ Img(dπ).

• It is clear that 0 ∈ H, which implies that ker(dπ) ⊂ (dπ)−1H and
(ker(dπ))c ⊂

〈
(dπ)−1H

〉
C∞c (P ).

Now we will start the proof:

(⊇): Note that every element of
〈(

(dπ)−1H
)〉
C∞c (P ) has compact support,

therefore we only need to prove:

(dπ)−1
(
〈H〉C∞c (P )

)
⊇
〈
(dπ)−1H

〉
C∞c (P ) .

To do so, note that

dπ
(〈
dπ−1(H)

〉
C∞c (P )

)
=
〈
dπ(dπ−1(H))

〉
C∞c (P ) = 〈H〉C∞c (P ) ,
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using in the last equality that H ⊂ Img(dπ) implies dπ(dπ−1(H)) = H.

Finally: 〈
(dπ)−1H

〉
C∞c (P ) ⊆ (dπ)−1

(
〈H〉C∞c (P )

)
.

(⊆): Take X ∈
(

(dπ)−1
(
〈H〉C∞c (P )

))
c
, we have that X ∈ Xc(P ) and:

dπ(X) =
∑
i

fiYi, for fi ∈ C∞c (P ) and Yi ∈ H.

Using again that H ∈ Im(dπ), there are Xi ∈ (dπ)−1H such that dπ(Xi) = Yi.
These elements are not necessarily compactly supported, but the elements
fiXi ∈ Xc(P ) have compact support. Then X − ΣfiXi ∈ Xc(P ) has compact
support and therefore:

(X − ΣfiXi) ∈ Ker(dπ)c ⊂
〈
(dπ)−1H

〉
C∞c (P ) .

Finally, because ΣfiXi ∈
〈
(dπ)−1H

〉
C∞c (P ), we get X ∈

〈
(dπ)−1H

〉
C∞c (P ),

concluding the statement.

Remark 1.3.4. Note that in the proof of 1.3.3, the hypothesis on π being a
submersion is only used to justify that H ⊂ Img(dπ) where H = π∗F .

Example 1.3.5. Let (M,F) a foliated manifold and U ⊂ M an open set.
Consider the inclusion ιU : U → M , which is clearly a submersion. The set
(dιU )−1ι∗U (F) is equal to F|U , therefore by Lemma 1.3.3 we have:

ι−1
U F = 〈F|U 〉C∞c (U) = {X|U : X ∈ F and supp(X) ⊂ U}.

A result of I. Androulidakis and M. Zambon in [AZ13, lemma 3.2] shows us
that there is a way to push forward foliations via surjective submersions with
connected fibers, as the following proposition:

Lemma 1.3.6. Let π : P →M be a surjective submersion with connected fibres.
Let F be a singular foliation on P , such that Γc(ker dπ) ⊂ F . Then there is a
unique singular foliation FM on M with π−1(FM ) = F .

A version of the “splitting theorem” it is shown in [AS09], and we will recall it
in the following proposition:

Proposition 1.3.7. Let (M,F) be a foliated manifold and x ∈M . Denote k :=
dim(Fx) and q := dim(M)− k. There exists a neighborhood U of x, a foliated
manifold (S,FS) of dimension q and a surjective submersion with connected
fibers π : U → S such that F|U = π−1FS, (FS)π(x) = 0 and Fx = ker(dxπ).
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Proof. This is Proposition 1.12 of [AS09], but we can make a sketch of the
proof following Lemma 1.3.6. First, there is a small enough transversal S of
Fx with dimension q, an open neighborhood U ⊂ M of x and a surjective
submersion with connected fibers π : U → S satisfying Γc ker(dπ) ⊂ F . Then
using Lemma 1.3.6 we get the desired foliation FS satisfying the conditions of
this proposition.

Consider the setting of proposition 1.3.7, i.e. let (M,F) be a foliated manifold,
x ∈ U ⊂ M , (S,FS) and π : U → S. Using the constant rank theorem for π
one can see U as an open set of Rk ×Rn−k, S as an open set of Rn−k and π as
the projection map. Then F|U is equal to π−1FS , where FS is a foliation in
Rn−k that vanishes at the origin.

Therefore using Lemma 1.3.3 the local picture F|U = π−1FS is the span
〈∂x1 , . . . , ∂xk ,FS〉C∞c (U). In particular, the local picture of a regular foliation of
rank k is given as the span 〈∂x1 , . . . , ∂xk〉C∞c (U).

1.4 Product foliations

Let (M,FM ) and (N,FN ) be two foliated manifolds. In this section we use the
definition of pullback foliation to get a foliation on M ×N which we call the
product foliation. This section is an original part of this thesis.

Definition 1.4.1. Given two foliated manifolds (M,FM ) and (N,FN ) we
define the following submodule FM ×FN of Xc(M ×N):

FM ×FN := π−1
M FM ∩ π

−1
N FN .

Here πM : M ×N →M and πN : M ×N → N are the projections.

In order to simplify notation, for a foliated manifold (M,FM ) and a manifold
N , we denote:

FM×NM := dπ−1
M (π∗MFM ) = {(X,Y ) ∈ X(M ×N) : X ∈ FM}, (1.4)

which consists of the projectable vector fields in M ×N going to FM .

Lemma 1.4.2.

FM ×FN = 〈{(XM , XN ) : XM ∈ FN and XN ∈ FN}〉C∞c (M×N)
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Proof. Note that {(XM , XN ) : XM ∈ FN and XN ∈ FN} = FM×NM ∩FM×NN .
Therefore this lemma asks us to prove that:(〈
FM×NM

〉
C∞c (M×N)

)
∩
(〈
FM×NN

〉
C∞c (M×N)

)
=
〈
FM×NM ∩ FM×NN

〉
C∞c (M×N) .

We continue the proof by double inclusion:

It is clear that(〈
FM×NM

〉
C∞c (M×N)

)
∩
(〈
FM×NN

〉
C∞c (M×N)

)
⊃
〈
FM×NM ∩ FM×NN

〉
C∞c (M×N) .

For the other inclusion take

X ∈ FM ×FN =
(〈
FM×NM

〉
C∞c (M×N)

)
∩
(〈
FM×NN

〉
C∞c (M×N)

)
.

There are functions f1 · · · fn, g1, · · · gk ∈ C∞c (M × N) and vector fields
X1, · · · , Xn ∈ FM×NM and Y1, · · · , Yk ∈ FM×NN such that:

X = f1X1 + · · ·+ fnXn,
X = g1Y1 + · · ·+ gkYk.

(1.5)

We can write Xi = (xi, x′i) and Yi = (yi, y′i) for xi, yi ∈ Γ(π∗MTM) and
x′i, y

′
i ∈ Γ(π∗NTN). Because Xi ∈ FM×NM then xi ∈ FM and using a similar

argument y′i ∈ FN .

Now using equation 1.5 we have that Σifi(0, x′i) = Σjgj(0, y′j) and Σifi(xi, 0) =
Σjgj(yj , 0). Finally:

X =
∑
i

fi · (xi, 0) +
∑
j

gj · (0, y′j) ∈
〈
FM×NM ∩ FM×NN

〉
C∞c (M×N) .

Proposition 1.4.3. FM ×FN is a singular foliation.

Proof. The set {(XM , XN ) : XM ∈ FN and XN ∈ FN} is involutive and
locally finitely generated on square open sets. Then FM ×FN is involutive and
locally finitely generated.

Now we prove that the definition of product foliation is well behaved under
pullbacks:
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Proposition 1.4.4. Let (M,FM ) and (N,FN ) be foliated manifolds and P, S
manifolds with surjective submersions τ : P →M , σ : S → N . Then

τ−1FM × σ−1FN = (τ × σ)−1(FM ×FN ). (1.6)

Proof. Denote W = P × S. Consider the following commutative diagram:

P W S

M M ×N N

τ

πP πS

τ×σ σ

πM πN

Similar to equation (1.4), for any submodule S ⊂ X(M ×N) we will denote:

(S)W := d(τ × σ)−1((τ × σ)∗(S)),

which are the projectable vector fields on W going to S.

Note that: (
π−1
M FM ∩ π

−1
N FN

)W = (π−1
M FM )W ∩ (π−1

N FN )W .

(1) The right hand side of equation (1.6) is

(τ × σ)−1(FM ×FN ) = (τ × σ)−1 (π−1
M FM ∩ π

−1
N FN

)
=
〈(
π−1
M FM ∩ π

−1
N FN

)W〉
C∞c (W )

=
〈
(π−1
M FM )W ∩ (π−1

N FN )W
〉
C∞c (W ) .

(2) The left hand side of equation (1.6) is

τ−1FM × σ−1FN =
{
π−1
P τ−1FM

}
∩
{
π−1
S σ−1FN

}
=
{

(τ × σ)−1π−1
M FM

}
∩
{

(τ × σ)−1π−1
N FN

}
=
{〈

(π−1
M FM )W

〉
C∞c (W )

}
∩
{〈

(π−1
N FN )W

〉
C∞c (W )

}
.

Due to (1) and (2) above we only need to prove that〈
(π−1

M FM )W ∩ (π−1
N FN )W

〉
C∞c (W )

=
{〈

(π−1
M FM )W

〉
C∞c (W )

}
∩
{〈

(π−1
N FN )W

〉
C∞c (W )

}
.
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By double inclusion, using a similar argument as in lemma 1.4.2, we get the
desired result.

1.5 Singular foliations as sheaves

The definition 1.1.5 of foliations as submodules becomes very restrictive in
the analytic and holomorphic setting or for non Hausdorff manifolds. Some
examples of this fact are:

• For M a non compact analytic or holomorphic manifold there is no
compactly supported analytic or holomorphic vector field on M different
from zero.

• Consider R × N and the equivalent relation given by (x, n) ∼ (y, k) iff
x = y and y 6= 0. Take M = (R × N)/ ∼, which is a non-hausdorff
manifold. Note that M can be thought as the real line R with infinitely
many origins. Every compactly supported smooth vector field on M must
vanish in all the origins (0, n).

Therefore, it appeared in the articles [LGLS18] and [GZ19] a different
characterization of singular foliations in terms of sheaves:

A singular foliation is an involutive and locally finitely generated subsheaf of
the vectorfields sheaf X.

Before we start, we give a brief introduction to sheaves. Recall that a presheaf
of groups on a topological space M consists of a choice of a group S(U) for
every open set U ⊂ M and of morphisms (−)|V : S(U) → S(V );x 7→ x|V for
every open set V ⊂ U .

This choice must satisfy some conditions, namely it must act as a contravariant
functor S : Op(M)→ C, where Op(M) is the category of open sets on M and
C is the category of groups (it is possible to have C as the category of algebras
or modules).

A presheaf is a sheaf if for every cover {Ui}i∈I of an open set U the following
axioms are satisfied:

• Locality: If x, y ∈ S(U) are such that x|Ui = y|Ui for each i then x = y.
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• Gluing: For every family xi ∈ S(Ui) satisfying xi|Ui∩Uj = xj |Ui∩Uj for
all i, j ∈ I, there is a section x ∈ S(U) such that x|Ui = xi.

Examples of sheaves on a manifold M are the presheaf of smooth functions C∞
and of vector fields X. The presheaf of compactly supported functions C∞c fails
to satisfy the gluing axiom for infinite covers, therefore is not a sheaf.

In this section we prove that any singular foliation (as submodule of Xc(M)) on
a smooth (Hausdorff) manifold can be considered as an involutive and locally
finitely generated smooth subsheaf of the vector fields sheaf X, as the following
theorem shows.

Theorem 1.5.1. For any smooth (Hausdorff) manifold M , we have the
following:

• There is a bijection between submodules of Xc(M) and subsheaves of X,
described in proposition 1.5.6.

• The condition of being locally finitely generated is invariant under this
bijection.

• The condition of involutivity is invariant under this bijection.

Proof. This theorem is a direct consequence of propositions 1.5.6, 1.5.7 and
1.5.9, that will appear later in this section.

Theorem 1.5.1 is a logical continuation to the work in article [AZ16] by I.
Androulidakis and M. Zambon. Moreover, its content can be easily generalized.
Given a Lie algebroid A, replacing Xc(M) by Γc(A) and X by ΓA := Γ(−, A),
one can follow the proofs given here and get the same results.

It is important to mention that these results are equivalent to some statements
appeared earlier in [Wan17] by Roy Wang. We claim that our work differs from
[Wan17] in a matter of presentation, being more direct. In what follows we will
explain our work.

We use the notion of global hull to “forget” the compactly supported condition:

Definition 1.5.2. Given F a submodule of Xc(M), the global hull of F is
given by:

F̂ := {X ∈ X(M) : fX ∈ F ∀f ∈ C∞c (M)}.

Given S a submodule of X(M) one can also define its compact elements:

(S)c := {X ∈ S : supp(X) is compact} = 〈S〉C∞c (M) .



24 SINGULAR FOLIATIONS

An important property of global hulls is the following:

Lemma 1.5.3. For F ⊂ Xc(M) a submodule, S a subsheaf of X and U ⊂M
open we get the following equalities:(

F̂
)
c

= F

((S(U))c)̂ = S(U)

Proof. The first equality and the inclusion S(U) ⊂ ((S(U))c)̂ are clear, we only
need to prove ((S(U))c)̂ ⊂ S(U).

Take X ∈ ((S(U))c)̂ and {ϕi}i∈I a partition of unity for U with functions
with compact support. Then there exists a cover {Uj}j∈J of U such that the
sum ΣiϕiX is finite in each Uj . Moreover, ϕiX ∈ S(U) therefore X|Uj =
ΣiϕiX|Uj ∈ S(Uj). By the gluing axiom of sheaves, there exists Y ∈ S(U) such
that Y |Ui = X|Uj and by the locality axiom of sheaves X = Y ∈ S(U).

Given a subsheaf S of X it is easy to define a submodule of Xc(M), just take
F := (S(M))c. A reasonable question is if we can recover S from F , which is
answered in the following proposition:

Lemma 1.5.4. Let S be a subsheaf of X. Denote F = (S(M))c then for any
U ⊂M open we have (S(U))c = ι−1

U F and therefore

S(U) = ι̂−1
U F .

Proof. We will prove by double inclusion that for every open set U ⊂M we get
the following equality: (S(U))c = ι−1

U F , which also implies that S(U) = ι̂−1
U F .

Take X ∈ (S(U))c, then X ∈ S(U) and the two sets U and M/supp(X) are a
cover ofM . Using the gluing property of S as sheaf, there exists Y ∈ S(M) = F̂
such that Y |U = X and YM/supp(X) = 0. Note that Y has compact support,
then Y ∈ F and this support is in U , therefore by definition X = Y |U ∈ ι−1

U F .

For the converse take X ∈ ι−1
U F . By definition there exists Y ∈ F = (S(M))c ⊂

S(M) such that Y |U = X and supp(Y ) ⊂ U . Therefore X = Y |U ∈ (S(U))c.

Therefore a natural way to define a presheaf for a singular foliation F is as
follows:

SF (U) := ι̂−1
U F .
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An easy consequence of lemma 1.5.4 is that starting from a sheaf S we get the
module F and SF = S, i.e. the process of getting a module from a sheaf is
invertible.

Now we just need to prove that, starting from a module F ⊂ X(M), the presheaf
SF is indeed a sheaf.

Lemma 1.5.5. Given F ⊂ Xc(M) a C∞(M)-submodule, SF is a sheaf.

Proof. Note that SF satisfies the locality axiom because it is a sub presheaf of
X, which is a sheaf.

We will prove the gluing condition. Take {Ui}i∈I a family of open sets contained
in and covering U , and Xi ∈ SF (Ui) such that Xi|Ui∩Uj = Xj |Ui∩Uj . Then
there exists X ∈ X(U) such that X|Ui = Xi. We will show that X ∈ SF (U).

Take f ∈ C∞c (U). Then there exists finitely many Ui in the family that
cover supp(f). Without loss of generality call them U1, . . . , Uk and denote
U0 = U − supp(f). There exists a partition of unity ϕ0, ϕ1, . . . , ϕk ⊂ C∞c (U)
subordinated to U0, U1, . . . , Uk. For all j > 0 the functions ϕj have compact
support on Uj , then ϕjfX = ϕjfXj ∈ ι−1

U F , therefore:

fX =
∑
j>0

ϕjfX ∈ ι−1
U F .

Using that f is arbitrary, we get X ∈ ι̂−1
U F = SF (U).

Proposition 1.5.6. Let C denote the collection of submodules of Xc(M) and
SH the subsheaves of X.

The map C → SH;F 7→ SF is a bijection. The inverse map is S 7→ FS :=
(S(M))c.

Proof. Lemma 1.5.5 gives a map C → SH;F 7→ SF . Lemma 1.5.4 shows that
this map is the inverse of the map SH → C;S 7→ FS := (S(M))c.

Now we want to prove the following:

Proposition 1.5.7. F is locally finitely generated as in the sense of definition
1.1.2 if and only if SF is locally finitely generated as a sheaf.

For a manifold M remember than any open set U ⊂M is a manifold. Therefore
Proposition 1.5.7 is a consequence of the following lemma:
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Lemma 1.5.8. Let U be a manifold, X1, · · · , Xn ∈ X(U), and F :=
〈X1, · · · , Xn〉C∞c (U), then F̂ = 〈X1, · · · , Xn〉C∞(U).

Proof. Let H = 〈X1, · · · , Xn〉C∞(U), we want to show that F̂ = H. It is clear
that H ⊂ F̂ . Now we prove the other inclusion. Take X ∈ F̂ and {ϕi}i∈I a
partition of unity for U with compact support. Then for every i we have that
ϕiX ∈ F . Therefore there exist α1

i , . . . , α
n
i ∈ C∞c (U) such that:

ϕiX = α1
iX1 + · · ·+ αni Xn

with supp(αji ) ⊂ supp(ϕi), therefore Σiαji ∈ C∞(M) for all j. Finally:

X =
∑
i∈I

ϕiX =
∑
i∈I

(
α1
iX1 + · · ·+ αni Xn

)

=
(∑
i∈I

α1
i

)
X1 + · · ·+

(∑
i∈I

αni

)
Xn ∈ H

Lemma 1.5.8 shows that if ι−1
U F is generated by some elements in ι̂−1

U F then
these elements also generate the global hull SF (U) = ι̂−1

U F and viceversa.

Finally we need to prove the involutivity condition:

Proposition 1.5.9. A submodule F of Xc(M) is involutive if and only if SF
is involutive.

Proof. (⇐) Suppose SF is involutive, then SF (M) is involutive and so F =
(SF (M))c.

(⇒) Suppose F is involutive, then for all U ⊂ M open we get that ι−1
U F =

(SF (U))c is involutive. We just need to prove that if a submodule H ⊂ X(U)
is involutive then Ĥ is also. Then take X,Y ∈ Ĥ and f ∈ C∞c (U) we will
prove that f [X,Y ] ∈ H. Take g ∈ C∞c (M) such that g|supp(f) = 1. Then using
Leibniz formula we obtain f [X,Y ] = [fX, gY ]− (gY (f))X ∈ H.

As a consequence of the equivalent description between subsheaves and
submodules given in theorem 1.5.1, get the following proposition:
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Proposition 1.5.10. Let F1 and F2 be two singular foliations on a manifold
M and U := {U ⊂ M}i∈I an open cover. Then F1 = F2 if and only if
ι−1
Ui
F1 = ι−1

Ui
F2 for all i ∈ I.

Proof. It is clear that F1 = F2 implies ι−1
Ui
F1 = ι−1

Ui
F2 for all i ∈ I.

For the converse take SF1 and SF2 the corresponding sheaves of F1 and F2.
By hypothesis we have:

SF1(Ui) = ι̂−1
Ui
F1 = ι̂−1

Ui
F2 = SF1(Ui).

Using elemental properties of sheaves (the restriction maps and the gluing
axiom) it is possible to prove by double inclusion that SF1(M) = SF2(M) and
therefore F1 = F2 (also SF1 = SF2).

This proposition says that two foliations are equal if and only if they are locally
equal.





Chapter 2

Hausdorff Morita equivalence
for singular foliations

The first two sections of this chapter are a summary of sections 1.2.2 and 2
of the article [AS09] by I. Androulidakis and G. Skandalis. There are no new
results but we give a new proof for proposition 2.1.3 and we changed the order
and presentation of the theorems. The intention for the rest of this chapter
is to introduce Hausdorff Morita equivalence for singular foliations as in the
article [GZ19] by M. Zambon and myself. We show the definition, display some
easy invariants, and present several classes of examples.

2.1 The automorphism group of a foliated manifold

We start this section with the group of automorphisms for a singular foliation.
This is a quite interesting object by its own and it serves as a motivation for
many other notions that we will introduce later on:

Definition 2.1.1. Let F be a singular foliation on a manifold M . The
automorphism group of F is the group

Aut(F) := { ϕ ∈ Diff(M) | ϕ−1(F) ⊂ F }.

Also due to the compact support for any element X ∈ F we may define the
exponential map exp : F → Diff(M) by exp(X) := ϕ1

X , where ϕ1
X is the flow

of X at time 1. The exponential map allows us to define the exponential

29
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group:

exp(F) := The group generated by { exp(X) ∈ Diff(M) | X ∈ F }.

Remark 2.1.2. By definition, for any φ ∈ Diff(M) and X ∈ X(M), the
pushforward of X under φ is given by:

(φ∗X)x = (dφ)Xφ−1x =
(
(dφ ◦ (φ−1)∗)X

)
x

=
(
((φ−1)∗ ◦ dφ)X

)
x
.

The following proposition was proven first in [AS09] using infinite dimensional
techniques. Ori Yudilevich and I provided a “finite dimensional” proof in [GY18]
which we will show here:

Proposition 2.1.3. Let F be a singular foliation on M . For any X ∈ Xc(M)
such that [X,F ] ⊂ F we have that

(ϕ1
X)−1(F) = F .

This also implies that
exp(F) ⊂ Aut(F).

Proof. We need to show that (ϕ1
X)∗(Y ) ∈ F for all Y ∈ F . Indeed, this implies

that (ϕ1
X)−1(F) ⊂ F , and since X ∈ F ⇒ −X ∈ F and (ϕ1

X)∗((ϕ1
−X)∗(Y )) =

Y , also that (ϕ1
X)−1(F) = F .

Let then X,Y ∈ F and let us shorten the notation for the flow of X to ϕt = ϕtX .
Since supp(X) ⊂M is compact, there exists a precompact open neighborhood U
of supp(X) in M . Let {ρU , ρV } be a partition of unity subordinate to the open
cover {U, V := M\supp(X)} of M . Since U is precompact, ρU has compact
support, and hence ρUF is finitely generated by part (c) of Lemma 1.1.4. Fixing
generators Y 1, ..., Y N ∈ X(U) of ρUF , we may write

Y = ρUY + ρV Y =
N∑
i=1

fiY
i + ρV Y,

for some fi ∈ C∞c (U). Now, since ϕt
∣∣
M\supp(X) = Id for all t and hence

(ϕ1)∗(ρV Y ) = ρV Y , we see that the problem is reduced to showing that
(ϕ1)∗(Y i) =

∑
j f

i
jY

j , for some functions f ij ∈ C∞(U). To this end, we
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compute the following:
d

dt
((ϕt)∗Y i)x = d

dt
(dϕt)Y iϕ−t(x)

= − d

ds

∣∣∣
s=0

(dϕt−s)Y iϕ−t+s(x)

= −(dϕt) d
ds

∣∣∣
s=0

(dϕ−s)Y iϕs(ϕ−t(x))

= (dϕt)[Y i, X]ϕ−t(x).

We claim that [Y i, X] ∈ ρUF . Indeed, choosing λ ∈ C∞c (U) that is 1 on
supp(X), we have [Y i, X] = [Y i, λX] = Y i(λ)X + λ[Y i, X] = Y i(λ)X +
[λY i, X] ∈ ρUF , where we used that X(λ) = 0, X ∈ ρUF ⊂ F and F
is involutive. Hence, we can write [Y i, X] =

∑
j γ

i
jY

j for some functions
γij ∈ C∞c (M). We thus have:

d

dt
(dϕt)Y iϕ−t(x) =

N∑
j=1

γij(ϕ−t(x))
(

(dϕt)Y jϕ−t(x)

)
.

Now, for a fixed x ∈ M , this is a system of N equations indexed by i, each
an equality of curves in TxM . Fixing a basis of TxM , every component is a
linear first ordinary partial differential equation of the type v̇(t) = A(t)v(t),
with v : I → RN and A : I → End(RN ), and its solution is given by v(t) =
e

∫ t
0
A(ε)dε

v(0). Thus, writing γ for the N ×N matrix whose entries are γij , we
have at t = 1 that:

((ϕ1)∗Y i)x = (dϕ1)Y iϕ−1(x) =
N∑
j=1

(e
∫ 1

0
γ(ϕ−ε(x))dε)ijY jx ,

where the exponential is the exponential of N × N matrices. Clearly, the
coefficients of Y jx in the final expression are smooth functions of x, and hence we
are done. As a bonus, we have also obtained an explicit formula for (ϕ1)∗Y i in
terms of the bracket of the Y i’s with X (which is encoded in the γ matrices).

Remark 2.1.4. Proposition 2.1.3 can be improved by saying that exp(F) ⊂
Aut(F) is a normal subgroup. This is a consequence of the fact that for any
φ ∈ Aut(F) and X ∈ F we have φ ◦ exp(X) ◦ φ−1 = exp(φ∗X) with φ∗X ∈ F .

Lemma 2.1.5. The leaves of F are the orbits of the group exp(F).

Proof. It is a direct consequence of the proof of the Stefan-Sussmann theorem
[RS13, §2.3].
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2.2 Bisubmersions

Bisubmersions were first introduced in [AS09]. In this section bisubmersions
will be seen as a groupoid-like structure for the group of automorphisms. In
lemma 2.2.5 and in corollary 2.2.16 we explain more explicitly what this means.

Most of the results in this section are taken from [AS09] with a variation in the
order and interpretation. We will make notice of the original results.

Definition 2.2.1. Let (M,FM ) and (N,FN ) foliated manifolds.

1. A bisubmersion between (M,FM ) and (N,FN ) is a smooth manifold U
with two (not necesarily surjective) submersions s : U →M and t : U → N
such that s−1FM = t−1FN = kerc(ds) + kerc(dt).

2. A bisubmersion of (M,FM ) is a bisubmersion between (M,FM ) and itself.

Being a bisubmersion is a local statement as the following lemma shows:

Lemma 2.2.2. Let (M,FM ) be a foliated manifold U be a manifold, t, s : U →
M submersions and {Ui}i∈I a cover of U . The triple (U, t, s) is a bisubmersion
if and only if (Ui, t|Ui , s|Ui) are bisubmersions for all i ∈ I.

Proof. This is a direct consequence of proposition 1.5.10.

Definition 2.2.3. Consider a foliated manifold (M,F), a bisubmersion (V, t, s)
and x ∈ s(V ).

(i) A bisection at x consists of a local s-section σ : M ′ → V , where M ′ is a
neighbourhood of x in s(V ), such that the image of σ is transverse to the
fibres of t.

(ii) Given a diffeomorphism φ between open subsets of M , a bisubmersion
(V, t, s) is said to carry φ at v ∈ V if there exists a bisection σ through v
such that φ = t ◦ σ.

Lemma 2.2.4. Let (V, t, s) be a bisubmersion of a foliated manifold (M,F)
and v ∈ V . There exists a bisection σ near s(v).

A relation between bisections and the automorphism group is shown in the
following lemma:

Lemma 2.2.5. Let φ be a diffeomorphism of M carried by a bisubmersion
(V, t, s) at v ∈ V . Then φ preserves the foliation near t(v), i.e. in a neighborhood
of t(v) we get φ−1F = F .
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Proof. Denote σ : U1 → V the bisection and U2 := t ◦ σ(U1). Note that
s ◦ σ : U1 → U1 is equal to the identity, then σ−1(s−1F) = F . Finally, using
the property s−1F = t−1F of bisubmersions, we get σ−1(t−1F) = F , which is
φ−1F = F in a neighborhood of t(v) (namely U2).

In corollary 2.2.16, we will prove that the converse is also true, i.e. any element
φ ∈ Aut(F) can be carried locally by a bisubmersion. Before that, we will
present certain constructions of bisubmersions which endow the collection of
bisubmersions with a group like structure:

Definition 2.2.6. Let (U, tU , sU ) and (V, tV , sV ) be bisubmersions.

(i) The inverse bisubmersion of U is U−1 := (U, sU , tU ), the bisubmersion
obtained by interchanging source and target.

(ii) Consider the following diagram:

U sU×tV V

U V

M M M

pVpU

sUtU tV sV

where pU , pV are the projections onto U and V . Denote W := U sU×tV V ,
then the composition of U with V is defined as:

U ◦ V := (W, tW := tU ◦ pU , sW := sV ◦ pV ).

Lemma 2.2.7. Let (U, t, s) be a bisubmersion of (M,F) and π : W → U be a
submersion. Then (W, t ◦ π, s ◦ π) is a bisubmersion.

Proof. By lemma 2.2.2, this is a local statement. Using the constant rank
theorem, it is enough to prove it for W = U × V and π the projection onto U ,
in which case the Lemma is clear.

Proposition 2.2.8. The inverse and compositions of bisubmersions are again
bisubmersions.

Proof. The inverse of a bisubmersion is clearly a bisubmersion. Therefore we will
only prove that the composition of two bisubmersions is again a bisubmersion.
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Use (W, tW , sW ), pU , pV as in definition 2.2.6 and denote µ := sU ◦pU = tV ◦pV .
Note that, ker(dµ) = ker(dpU ) ⊕ ker(dpV ). From Lemma 2.2.7, it follows
that (W, tW , µ) and (W,µ, sW ) are bisubmersions, and also that (tW )−1F =
(sW )−1F . We only need to prove that (tW )−1F = ker(dtW ) + ker (dsW ). We
will do it by double inclusion. ⊇ is clear. For the other inclusion we have the
following:

(tW )−1F = ker (dtW ) + ker (dµ)

= ker (dtW ) + ker (dpU ) + ker(dpV )

= ker (dtW ) + ker(dpV )

⊆ ker (dtW ) + ker(dsW ).

since ker (dpU ) ⊆ ker (dtW ) and ker(dpV ) ⊂ ker(dsW ).

Definition 2.2.9. Given a foliated manifold (M,F) and two bisubmersions U
and V , a smooth map f : U → V is called a morphism of bisubmersions if it
commutes with the source and the target maps of U and V .

For any two bisubmersions U and V , If σ is a bisection of U and f : U → V a
morphism, then f ◦ σ is a bisection of V carrying the same diffeomorphism as σ.

The following proposition can be found in [AS09, §2.3].

Proposition 2.2.10. Given x0 ∈ M , let X1, . . . , Xn ∈ F be vector fields
whose classes in the fibre Fx0 form a basis. For v = (v1, . . . , vn) ∈ Rn, put
ϕv = exp(ΣiviXi), where exp denotes the time one flow.

Put W = Rn ×M , s(v, x) = x and t(v, x) = ϕv(x). There is a neighbourhood
U ⊂W of (0, x0) such that (U, t, s) is a bisubmersion.

Definition 2.2.11. A bisubmersion as in proposition 2.2.10, when it has s-
connected fibres, is called path holonomy bisubmersion.

Remark 2.2.12. Neighbourhoods of points of the form (0, x0) in path holonomy
bisubmersions carry the identity.

Lemma 2.2.13. Let (V, tV , sV ) a bisubmersion and v0 ∈ V . Assume that
s(v0) = x0 and that V carries the identity diffeomorphism at v0. Then for
every path holonomy bisubmersion U containing (0, x0), there exists an open
neighbourhood V ′ ⊂ V of v0, and a submersion f : V ′ → U which is a morphism
of bisubmersions and f(v0) = (0, x0).

Proof. The proof of this lemma can be found in [AS09, §2.3]
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Corollary 2.2.14. Let (V1, t1, s1) and (V2, t2, s2) be bisubmersions and v1 ∈ V1,
v2 ∈ V2 be such that s1(v1) = s2(v2) =: x0. Then:

(i) If there is a local diffeomorphism carried both by V1 at v1 and by V2 at
v2, there exists an open neighbourhood V ′1 of v1 in V1 and a morphism
f : V ′1 → V2 such that f(v1) = v2.

(ii) If there is a morphism g : V1 → V2 such that g(v1) = v2 then there exists
an open neighbourhood V ′2 of v2 in V2 and a morphism f : V ′2 → V1 such
that f(v2) = v1.

Proof. (i): Take (V1, t1, s1) and (V2, t2, s2) two bisubmersions carrying a
diffeomorphism φ at v1 ∈ V1 and at v2 ∈ V2 respectively. Note that
(V1, φ

−1t1, s1) and (V2, φ
−1t2, s2) are bisubmersions that carry the identity

at v1, v2 respectively.

By proposition 2.2.13, for any path holonomy bisubmersion U containing (0, x0),
there exist submersion maps of bisubmersions f1 : V ′1 → U and f2 : V ′2 → U
such that f1(v1) = (0, x) = f2(v2).

Because f2 is a submersion, it is possible to find a local section f−1
2 nearby

(0, x0) such that f−1
2 (0, x0) = v2. Note that f−1

2 is also a map of bisubmersions.
Finally the map f := f−1

2 ◦ f1 is a morphism of bisubmersion defined locally
around v1, going to V2 and such that f(v1) = v2.

(ii): This is a consequence of part (i).

Remark 2.2.15. Note that, if V is a bisubmersion that carries the identity
diffeomorphism around x0 ∈ M , and U is a path holonomy bisubmersion
containing (0, x0), then there is an open neighborhood U ′ ⊂ U of (0, x0) which
can be embedded into V . This follows from lemma 2.2.13 and corollary 2.2.14
(ii).

Note that, if φ is carried by a bisubmersion U and σ by a bisubmersion V then
φ ◦ σ is carried by U ◦ V . Also, the inverse φ−1 is carried by U−1.

Corollary 2.2.16. If φ ∈ Aut(F) then for each x ∈ M there exists a
bisubmersion Vx carrying ϕ at an element vx ∈ Vx.

Proof. Given x ∈ M take (Vx, t, s) a path holonomy bisubmersion for x. Vx
carries the identity at vx = (0, x). Note that using that ϕ−1F = F we get easily
that (Vx, ϕ ◦ t, s) is a bisubmersion that carries ϕ at vx.

Remark 2.2.17. Unless there exists a global bisubmersion, not every element
in Aut(F) can be seen as a bisection. The statement of corollary 2.2.16 is local.
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2.3 Definition of Hausdorff Morita equivalence

In this chapter we will introduce the main definition of article [GZ19] by Marco
Zambon and myself. Before we start, we state a lemma that will be used
repeatedly, and which is an immediate consequence of [Gin01, proposition 7.1]:

Lemma 2.3.1. Let A and B be manifolds, k ≥ 0, and f : A→ B a surjective
submersion with k-connected fibers. If B is k-connected then A is k-connected.

Now we state an original definition first introduced in [GZ19] which is inspired
by: Morita equivalence for Lie algebroids in [Gin01, §6.2], for Poisson manifolds
as in [CF04, §9.2] and for regular foliations as in [Mol88, §2.7].

Definition 2.3.2. Two singular foliations (M,FM ) and (N,FN ) are Haus-
dorff Morita equivalent if there exists a manifold P and two surjective
submersions with connected fibers πM : P → M and πN : P → N such that
π−1
M FM = π−1

N FN . In this case we write (M,FM ) 'ME (N,FN ).

P

(M,FM ) (N,FN )

πM πN

Definition 2.3.2 states when two foliated manifolds have the same “transverse
geometry”. Following the proof of Lemma 2.2.5 one can also motivate definition
2.3.2 by means of the automorphism group, using its relation with the local
automorphisms φ from M to N such that φ−1FN = FM .

Lemma 2.3.3. Hausdorff Morita equivalence is an equivalence relation on
foliated manifolds.

Proof. A foliated manifold (M,FM ) is equivalent to itself, by means of
(M, IdM , IdM ), therefore this relation is reflexive. It is clearly symmetric.
We now prove that it is transitive.

For the transitivity, let (M,FM ), (N,FN ) and (S,FS) be foliated manifold such
that M 'ME N and N 'ME S. There exists manifolds P1, P2 and surjective
submersions with connected fibers πM , π1

N , π
2
N , πS as in this diagram, inducing

the above Hausdorff Morita equivalences.
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P1 ×N P2

P1 P2

(M,FM ) (N,FN ) (S,FS)

Pr1 Pr2

πM π1
N π2

N πS

Take P := P1 ×N P2, and denote the projections onto the factors by Pr1 and
Pr2. The commutativity of the diagram implies that

(πM◦Pr1)−1(FM ) = Pr−1
1 ((π1

N )−1(FN )) = Pr−1
2 ((π2

N )−1(FN )) = (πS◦Pr2)−1(FS).

The maps πM ◦ Pr1 : P → M and πS ◦ Pr2 : P → S are clearly surjective
submersions. We prove below that they have connected fibres, allowing to
conclude that M 'ME S via P = P1 ×N P2 and thus finishing the proof.

For any m ∈M we now show that (πM ◦ Pr1)−1(m) is connected. Notice that
the map

Pr1 : (πM ◦ Pr1)−1(m)→ π−1
M (m),

is a surjective submersion with connected fibres, because the fibre over p1 ∈
π−1
M (m) is

Pr−1
1 (p1) = {(p1, p2) : p2 ∈ (π2

N )−1(π1
N (p1))} ∼= (π2

N )−1(π1
N (p1)),

which is connected. Then using the connectedness of π−1
M (m) and lemma 2.3.1

we get that (πM ◦ Pr1)−1(m) is connected. The same argument shows that
πS ◦ Pr2 : P → S also has connected fibres.

Note that Definition 2.3.2 does not require the property of bisubmersions that
π−1
M FM = π−1

N FN equals kerc(dπM ) + kerc(dπN ). The main reason for not
including this property is that it is not needed to prove any of the features that
we want Hausdorff Morita equivalence to have.

Another reason is that, given a singular foliation (M,F), there may not exist
any global bisubmersion between (M,F) and itself. Indeed, assume such a
global bisubmersion (U, t, s) exists. For every p ∈ U we have F/Is(p)F ∼=
s−1F/Ip(s−1F). The dimension of the latter is ≤ 2(dim(U)− dim(M)), since
the map:

(kerc(ds)/Ip kerc(ds))⊕ (kerc(dt)/Ip kerc(dt))→ s−1F/Ip(s−1F),

[X] + [Y ] 7→ [X + Y ],
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is surjective. Combining these two facts we see that, at every x ∈ M , the
dimension of F/IxF is bounded above by 2(dim(U)− dim(M)). However there
exist singular foliations (on non-compact manifolds) for which this dimension is
unbounded. A concrete example is displayed in [AZ13, lemma 1.3].

2.4 First invariants

The rough idea of definition 2.3.2 is that two singular foliations are Hausdorff
Morita equivalent if they have the same leaf space and if the “transverse
geometry” at corresponding leaves is the same. In this chapter we will show
what this means locally, but there is also a global and more abstract implication
that we will show in theorem 4.5.1.

Proposition 2.4.1. Let (M,FM ) and (N,FN ) be singular foliations which are
Hausdorff Morita equivalent, by means of (U, πM , πN ). Then:

(i) There is a homeomorphism between the leaf space of (M,FM ) and the
leaf space of (N,FN ): it maps the leaf through x ∈M to the leaf of FN
containing πN (πM−1(x)). It preserves the codimension of leaves and the
property of being an embedded leaf.

(ii) Let x ∈M and y ∈ N be a points lying in corresponding leaves. Choose
slices Sx at x and Sy at y. Then the foliated manifolds (Sx, ι−1

Sx
FM ) and

(Sy, ι−1
Sy
FN ) are diffeomorphic.

(iii) Let x ∈M and y ∈ N be points lying in corresponding leaves. Then the
isotropy Lie algebras gFMx and gFNy are isomorphic.

Proof. (i) For every leaf LM onM , the preimage π−1
M (LM ) is a leaf of π−1

M FM =
π−1
N FN . Hence it equals π−1

N (LN ) for a unique leaf LN on N , which has the
same codimension as LM . Since πM and πN are continuous open maps, this
assignment is a homeomorphism. If LM is an embedded leaf, then a chart on
M adapted to LM induces a chart on U adapted to π−1

M (LM ), and vice versa.

(ii) By Definition 2.3.2, it suffices to work with the submersion πM : U → M .
Take u ∈ U and let Su be a transversal for π−1

M FM at u. Then Sx := πM (Su) is
a transversal for FM at x := πM (u). Counting dimensions, and shrinking Su if
necessary, we see that πM |Su : Su → Sx is a diffeomorphism. The commutativity
of the diagram
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Su U

Sx M

ιSu

πM |Su o πM

ιSx

implies that the singular foliations ι−1
Sx
FM and ι−1

Su
FU correspond under the

above diffeomorphism, where FU := π−1
M FM .

(iii) follows from (ii), since the isotropy Lie algebra at a point coincides with the
isotropy Lie algebra of the transverse foliation at that point, see [AZ13, Rem.
2.6].

Example 2.4.2. a) Given distinct integers k, l > 0, the singular foliation on
the real line generated by the vector field xk ∂

∂x and the one generated by xl ∂∂x
lie in different Morita equivalence classes. This can be seen noticing that there
is no diffeomorphism between neighbourhoods Sk and Sl of the origin that maps
xk ∂

∂x |Sk to the product of xl ∂∂x |Sl with a no-where vanishing function, and then
applying proposition 2.4.1 ii). Notice however that the underlying partitions
into leaves and the isotropy Lie algebras are the same.

b) Consider the singular foliations on R2 given by the linear actions of GL(2,R)
and SL(2,R). They have the same leaves, namely the origin and its complement.
The isotropy Lie algebras at the origin are the Lie algebras of GL(2,R) and
SL(2,R) respectively, hence by proposition 2.4.1 iii) these two singular foliations
are not Hausdorff Morita equivalent.

Recall from lemma 1.1.14 that the projective foliations are foliations with fibers
of constant dimension.

Proposition 2.4.3. Hausdorff Morita equivalence of singular foliations
preserves the following families of singular foliations:

(i) regular foliations

(ii) projective foliations

Proof. It suffices to show that, given a surjective submersion Ψ: M → N
and a singular foliation F on N , the pullback foliation Ψ−1F is regular (resp.
projective) whenever F is. For the regular case this is clear, implying (i). For
the projective case, by example 3.3.16 there is an almost injective Lie algebroid
A associated to F . The pullback Lie algebroid Ψ−1A is also almost injective,
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as one checks using Def. 3.4.4(definition of the pullback for a Lie Algebroid),
and its underlying foliation is Ψ−1F by lemma 3.4.6 (which express how is the
foliation of the pullback algebroid).

2.5 Examples

The next three subsections are dedicated to examples of Hausdorff Morita
equivalent singular foliations, starting with the elementary ones.

Elementary examples

Example 2.5.1 (Isomorphic foliations). Two foliated manifolds (M,FM ) and
(N,FN ) are said to be isomorphic if there exists a diffeomorphism φ : M → N
such that φ−1FN = FM . Two isomorphic foliated manifolds are Hausdorff
Morita equivalent.

Example 2.5.2 (Full foliations). Any two connected manifolds M and N with
the full foliations Xc(M) and Xc(N) are Hausdorff Morita equivalent, using
P = M ×N and its projection maps.

Example 2.5.3 (Zero foliations). Two manifolds M and N with the zero
foliations are Hausdorff Morita equivalent if and only if they are diffeomorphic.

Example 2.5.4 (Simple foliations). A regular foliation F on a manifold M is
called simple if the leaf space M/F is a smooth manifold such that the projection
map is a submersion. The foliation F on M and the zero foliation on M/F are
Hausdorff Morita equivalent.

The following corollary also counts as an example:

Corollary 2.5.5. If (M1,F1
M ) is Morita equivalent to (M2,F2

M ) and (N1,F1
N )

to (N2,F2
N ) then (M1×N1,F1

M ×F1
N ) is Morita equivalent to (M2×N2,F2

M ×
F2
N ).

Proof. There are P and S with surjective submersions with connected fibers
making the Morita equivalences:

P S

M1 M2 N1 N2

π1 π2 σ1 σ2
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Then using the proposition 1.4.4 we get that:

P × S

M1 ×N1 M2 ×N2

π1×σ1 π2×σ2

is a Morita equivalence between (M1 × N1,F1
M × F1

N ) and (M2 × N2,F2
M ×

F2
N ).

Examples obtained by pushing forward foliations

Note that any bisubmersion (V, t, s) between foliated manifolds (M,FM )
and (N,FN ) (see Def. 2.2.1), when s and t have connected fibres, is a
Morita equivalence between FM |s(V ) and FN |t(V ). Here we construct Morita
equivalences of this kind, starting from simple data for which concrete examples
can be found quite easily.

Remark 2.5.6. Given two surjective submersions s : U →M and t : U → N
with connected fibres, let FM be a singular foliation on M such that s−1(FM ) ⊃
Γc(ker dt). Then, by lemma 1.3.6, there is a unique singular foliation FN on
N such that s−1(FM ) = t−1(FN ). In particular, (M,FM ) 'ME (N,FN ). In
other words, we can “transport” the foliation FM on M to a Hausdorff Morita
equivalent foliation on N .

Corollary 2.5.7. Given two submersions s : U → M and t : U → N with
connected fibres, assume that

[Γc(ker ds),Γc(ker dt)] ⊂ Γc(ker ds) + Γc(ker dt) =: FU .

Then there are unique foliations FM and FN on M and N respectively such
that s−1(FM ) = t−1(FN ) = FU . In particular, (M,FM ) 'ME (N,FN ).

Proof. Apply lemma 1.3.6 for the foliation FU twice: to the map s and to the
map t.

An interesting special case of Cor. 2.5.7 is when the submersions arise from Lie
group actions.

Corollary 2.5.8. Consider two connected Lie groups G1, G2 acting1 freely and
properly on a manifold P with commuting actions. Then the following singular
foliations are Hausdorff Morita equivalent:

1The actions can be both right actions, both left actions, or one right and one left action.
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1. the singular foliation on P/G1 given by the induced G2 action,

2. the singular foliation on P/G2 given by the induced G1 action.

Proof. Since the infinitesimal generators of the G1-action commute with those
of the G2-action, the hypotheses of Cor. 2.5.7 are satisfied. It is straightforward
that the singular foliation on P/G1 induced by the G2 action pulls back to the
singular foliation on P induced by the G1 × G2 action, and similarly for the
singular foliation on P/G2.

Notice that the Hausdorff Morita equivalence is realised by P with the projection
map. When the singular foliation on P given by the G1 ×G2 action is regular,
the induced foliations on P/G1 and P/G2 are also regular.

Now we specialize Cor. 2.5.8 even further, taking P to be a Lie group and
G1,G2 to be two connected closed subgroups acting respectively by left and
right multiplication. We present two examples.

Example 2.5.9. Let P = U(2), G1 = SU(2), and let G2 consist of the diagonal
matrices in SU(2) (hence G2 ∼= U(1)). The quotient of the left action of SU(2)
on U(2) is SU(2)\U(2) ∼= S1, since the homomorphism det : U(2) → S1 has
kernel SU(2). The action of G2 on U(2) by right multiplication descends to the
trivial action on S1. Hence on S1 we obtain the (regular) foliation by points.
By Cor. 2.5.8, it is Hausdorff Morita equivalent to the (regular) foliation on
U(2)/G2 by orbits of the left SU(2)-action.

Example 2.5.10. We apply Cor. 2.5.8 to actions of the Lie groups SO(2n) and
U(n) on P = SO(2n+ 1). We can include SO(2n) in SO(2n+ 1) as matrices
with 1 in the bottom right corner. Left multiplication induces a left action of
SO(2n) on SO(2n+ 1) with quotient manifold SO(2n)\SO(2n+ 1) ∼= S2n.

On the other hand, we can include U(n) in SO(2n+ 1) as the unitary matrices
with 1 in the bottom right corner. Right multiplication induces a right action of
U(n) on SO(2n+ 1). The quotient manifold is

SO(2n+ 1)/U(n) ∼= J(2n+ 2),

where J(2n+ 2) denotes the set of complex structures in R2n+2 preserving the
canonical inner product and orientation. In fact, there is a diffeomorphism
SO(2n + 1)/U(n) ∼= SO(2n + 2)/U(n + 1), induced by the transitive action
of SO(2n+ 1) on SO(2n+ 2)/U(n+ 1) inherited from the left multiplication,
which has isotropy group U(n). In turn, SO(2n + 2)/U(n + 1) ∼= J(2n + 2)
by considering the action of SO(2n+ 2) on J(2n+ 2) by pullbacks, which has
isotropy group U(n+ 1).
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Hence by Corollary. 2.5.8 the following singular foliations are Hausdorff Morita
equivalent:

• the singular foliation on J(2n+ 2) induced by the action of
SO(2n) ⊂ SO(2n+ 2) via pullbacks,

• the singular foliation on S2n induced by the action by right matrix
multiplication of U(n) ⊂ SO(2n+ 1).

Note that the South pole and North pole of S2n are the only fixed points of the
action of U(n), therefore on S2n we have a genuinely singular foliation. As a
consequence of Morita equivalence, the foliation on J(2n+2) is also non-regular.

Examples from Morita equivalent Poisson manifolds

A Poisson manifold (M,ΠM ) gives rise to a singular foliation FΠM that consists
of C∞c (M)-linear combinations of Hamiltonian vector fields on M . In particular,
the leaves of FΠM are exactly the symplectic leaves of the Poisson structure.
Example 2.5.11. Let (M,ΠM ) and (N,ΠN ) be Poisson manifolds. A full
dual pair [Wei83, §8] consists of a symplectic manifold (U, ω) with surjective
submersions s : U → M and t : U → N which are Poisson and anti-Poisson
maps respectively, and such that ker(dus) and ker(dut) are symplectic orthogonal
subspaces of TuU for all u ∈ U . Notice that Γ(ker ds) is generated by {Xt∗g :
g ∈ C∞(N)} as a C∞(U)-module, while Γ(ker dt) is generated by {Xs∗g : g ∈
C∞(M)}. Here we denote by XF the Hamiltonian vector field of the function
F .

A full dual pair with connected fibres is a global bisubmersion with connected
fibres for the foliations FΠM and FΠN (see Def. 2.2.1). Indeed, since s is a
Poisson map, for any Hamiltonian vector field Xg, an s-lift is given by Xs∗g,
hence

s−1(FΠM ) = 〈{Xs∗g : g ∈ C∞(M)}+ Γ(ker ds)〉C∞c (U) = Γc(ker dt)+Γc(ker ds),

and the analogous equation holds for t. As a consequence, (M,FΠM ) 'ME

(N,FΠN ).
Corollary 2.5.12. If two Poisson manifolds are Morita equivalent [Xu91] then
their singular foliations are Hausdorff Morita equivalent.

Proof. Two Poisson manifolds are Morita equivalent if they are related by a
complete full dual pair with simply connected fibers. Hence the statement
follows from Ex. 2.5.11.





Chapter 3

Lie Groupoids and Lie
Algebroids

In this chapter we introduce the notions of Lie groupoids, Lie algebroids and
their relation with singular foliations. Most of the results can be found in
[CF03], [Mac05] and [MM03], however we have some original results.

3.1 Lie Groupoids

This section is an introduction to Lie groupoids and can be easily skipped by
those familiar with the subject. The material presented here can be also found
in [CF03], [Mac05], [MM03] and [Wan18].

As a motivation, we come back to section 2.2 where we introduced a finite
dimensional object, namely the bisubmersions, to study an infinite dimensional
group, the group of automorphisms preserving a foliation. The same motivation
can be used to introduce Lie groupoids. Indeed, the bisections of a Lie groupoid
G ⇒ M give rise to a subgroup of Diff(M). Depending on G, this subgroup
preserves certain structures on M . We will give more details on this idea after
definition 3.1.13.

Definition 3.1.1. A topological groupoid consists of:

• Two topological spaces G and M . Here G is called the set of arrows and
M the set of objects.

45
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• Two surjective continuous maps: s : G →M called the source map and
t : G →M called the target map.

• A continuous map ◦ : Gs×t G → G, called composition.

• A continuous map e : M → G, called identity.

• A continuous map (−)−1 : G → G, called inverse.

such that:

• ◦ is associative: for all (g, h, s) ∈ Gs×t Gs×t G we have (g ◦ h) ◦ s =
g ◦ (h ◦ s).

• e is indeed an identity: for all x ∈ M we get t(ex) = s(ex) = x and
for all g ∈ G we have et(g) ◦ g = g ◦ es(g) = g.

• (−)−1 is indeed an inverse: for all g ∈ G we have (g−1)−1 = g,
t(g) = s(g−1), s(g) = t(g−1) with g−1 ◦ g = es(g) and g ◦ g−1 = et(g).

A topological groupoid is denoted as G ⇒ M . It is source connected if the
source fibers are path connected (this also implies that the target fibers are path
connected). It is open if the source and target maps are open maps.

Definition 3.1.2. A Lie groupoid is a topological groupoid G ⇒ M such
that G and M are smooth manifolds, the source and target maps are surjective
submersions and the composition, identity and inverse maps are smooth.

In particular, any Lie groupoid is an open topological groupoid, and any Lie
groupoid with connected source fibers is a source connected groupoid (for a
smooth manifold being connected and path connected are equivalent).

Remark 3.1.3. One of the reasons to ask s to be a submersion is that Gs×t G
must have a canonical structure of smooth manifold to make sense of the
smoothness of the composition map. Also note that the map s is a submersion
if and only if t = s ◦ (−)−1 is a submersion.

Convention 3.1.4. It is customary to allow the space of arrows G of a Lie
groupoid to be a non-Hausdorff manifold. Nevertheless it is required that each
source fiber (and therefore each target fiber) must be Hausdorff.

Remark 3.1.5. A groupoid can be seen as a small category, where every arrow
is invertible.
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Examples of Lie groupoids

We start with three easy examples of Lie groupoids:

Example 3.1.6. (Pair groupoid) Take any manifold M as the set of objects
and G := M ×M as the space of arrows. Then the following data defines a Lie
groupoid, called the pair groupoid:

• s : G →M ; (x, y) 7→ y and t : G →M ; (x, y) 7→ x.

• ◦ : Gs×t G → G; (x, y) ◦ (y, z) 7→ (x, z).

• e : M → G;x 7→ (x, x).

• (−)−1 : G → G; (x, y) 7→ (y, x).

Example 3.1.7. Let M,S be manifolds (in particular take M := Rk and
S := Rn−k). Take P = M × S as the set of points and G := M ×M × S the
space of arrows. Then the following data defines a Lie groupoid:

• s : G → P ; (x, y, c) 7→ (y, c) and t : G → P ; (x, y, c) 7→ (x, c).

• ◦ : Gs×t G → G; (x, y, c) ◦ (y, z, c) 7→ (x, z, c).

• e : P → G; (x, c) 7→ (x, x, c).

• (−)−1 : G → G; (x, y, c) 7→ (y, x, c).

Example 3.1.7 is the local picture of the holonomy groupoid of a regular foliation
which will be given in section 3.2.

A more general example is the following:

Example 3.1.8. Let π : P → S be a surjective submersion. Take P as the set
of points and the fiber product G := P ×S P as the space of arrows. Then the
following data defines a Lie groupoid:

• s : G → P ; (x, y) 7→ y and t : G → P ; (x, y) 7→ x.

• ◦ : Gs×t G → G; (x, y) ◦ (y, z) 7→ (x, z).

• e : P → G;x 7→ (x, x).

• (−)−1 : G → G; (x, y) 7→ (y, x).
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Note that, taking P = M × S and π : P → S the natural projection, example
3.1.8 reduces to example 3.1.7.

Now we will show an example that illustrates how Lie groupoids are a
generalization of Lie groups. In fact, Lie groupoids can be seen as Lie groups
where the multiplication is defined only for composable elements.
Example 3.1.9. A Lie group G is a Lie groupoid over a point G⇒ {∗}. Here
source and target maps are canonical. The composition, identity and inverse
maps correspond to the usual multiplication, identity and inverse maps on G.

Now we continue with a different characterization of Lie groupoids. The following
two examples illustrate Lie groupoids as generalized manifolds:
Example 3.1.10. (Identity groupoid) A manifold M can be seen as a Lie
groupoid M ⇒ M with source and target given by the identity map. The
multiplication, identity and inverse maps are given in a canonical way.

Recall that manifolds (of dimension n ∈ N) can be defined as a collection of
open balls on Rn that are “glued” together by a family of maps satisfying a
cocycle condition. With this idea in mind, a manifold M can also be seen as
the following groupoid:
Example 3.1.11. (Čech Groupoid) Let M be a manifold and {Ui}i∈I a
family of charts covering M (each Ui can be seen as an open ball in Rn). Take
the disjoint union M̂ := ti∈IUi as the base of the groupoid. There is a canonical
map π : M̂ →M .

The Čech Groupoid is the groupoid of example 3.1.8 for the map π : M̂ →M .
Note that the arrows are given by:

G := M̂ ×π M̂ = ti,j∈IUi ×M Uj .

On M̂ , one can define an equivalence relation: x ∼ y if and only if there
exists g ∈ G such that t(g) = x and s(g) = y. Then it is easy to see that
M̂/G := (M̂/ ∼) 'M .

The Čech Groupoid and the identity groupoid of M present some similarities.
Indeed, they are Morita equivalent as we will see in section 3.5.

Now we will combine examples 3.1.9 (as a Lie group) and 3.1.10 (as a manifold)
into a more general view of what a Lie groupoid is about:
Example 3.1.12. (Action groupoid) Let G be a Lie group acting on a
manifold P . Take as set of arrows G := G × P and the set of points P . The
following data defines a Lie groupoid called the action groupoid:
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• s : G → P ; (g, x) 7→ x and t : G → P ; (g, x) 7→ gx.

• ◦ : Gs×t G → G; (h, gx) ◦ (g, x) 7→ (hg, x).

• e : P → G;x 7→ (IdG, x).

• (−)−1 : G → G; (g, x) 7→ (g−1, gx).

If G acts freely and properly on P , then the quotient space M := P/G is a
manifold. Note that in this case the action groupoid G× P is almost the same
as the groupoid in example 3.1.8 for the quotient map π : P →M . Indeed they
are isomorphic, as we will show after definition 3.1.23.

Bisections and group of diffeomorphisms

As is the case for bisubmersions, see section 2.2, groupoids are sometimes used to
study subgroups of Diff(M). This characterization uses the notion of bisections.

Definition 3.1.13. Given a groupoid G ⇒ M , a bisection consists of an s
section σ : M → G that is transverse to the fibers of t.

Any bisection σ defines a diffeomorphism on M given by σ̂ := t ◦ σ : M →M .

Moreover, the multiplication in G defines a multiplication on bisections given
by the formula

(σ ◦ φ)(x) = σ(φ̂(x)) ◦ φ(x).

Note that σ̂ ◦ φ = σ̂ ◦ φ̂.

On the identity groupoid M ⇒ M , there is only one bisection, the identity
map, this bisection carries the identity diffeomorphism. In general, for any Lie
groupoid G ⇒M , the identity section e : M → G is a bisection and carries the
identity diffeomorphism.

The bisections of a Lie groupoid G ⇒ M have a group structure with
multiplication given by the composition ◦ and the identity given by the identity
section e : M → G. This group can be seen as a subgroup of Diff(M) under the
map σ 7→ σ̂.

Example 3.1.14. In the sense of definition 3.1.13, the group Diff(M) is given
by the bisections of the pair groupoid M ×M .

Example 3.1.15. Note that bisections of the groupoid in example 3.1.7 are
constant on S. This means that for all c ∈ S they send the manifold M × {c}
to itself.
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In example 3.1.8, the group of bisections preserves strongly1 the fibers of the
map π.

Example 3.1.16. In the example 3.1.11 (the Čech Groupoid), the local
bisections give a family of maps satisfying the cocycle condition and they glue
together the components of M̂ , giving the manifold M as result.

Example 3.1.17. In example 3.1.12 about the action groupoid, for each
g ∈ G the map σg : M → G ×M ; p 7→ (g, p) is a bisection that carries the
diffeomorphism of multiplying by g on M .

Intrinsic structures of Lie groupoids:

To continue our illustration of Lie groupoids we will point out important features
on their structure.

For any Lie groupoid G ⇒ M , the inverse map is a diffeomorphism on G.
Therefore, for all x ∈ M , we get the following diffeomorphism between the
fibers:

(−)−1|s−1(x) : s−1(x)→ t−1(x).

Moreover, for every g ∈ G there are two diffeomorphisms:

• The left multiplication:

Lg : t−1(s(g))→ t−1(t(g));h 7→ g ◦ h. (3.1)

• The right multiplication:

Rg : s−1(t(g))→ s−1(s(g));h 7→ h ◦ g. (3.2)

For every point x ∈M the Lie groupoid structure gives us:

• A Lie group, called the isotropy Lie group, given by the set

Gx := s−1(x) ∩ t−1(x).

• An immersed submanifold of M , called the orbit through x, given by
Ox := t(s−1(x)) (an equivalent description is s(t−1(x))).

1The diffeomorphism sends each fiber to itself
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A Lie groupoid also has an associated topological space called the orbit space,
which is given by the set M/G := {Ox : x ∈M} equipped with the quotient
topology via the map Q : M →M/G;x 7→ Ox.

Example 3.1.18. Let G be a Lie group acting on a manifold M . For the action
groupoid G×M , the notions of left/right multiplication given in equations 3.1
and 3.2 coincide with the respective notions on G. Moreover, the isotropy
groups, the orbits and the orbit space coincide with the respective notions for
the G-action on M .

Definition 3.1.19. Let G ⇒ M be a Lie groupoid. A submanifold S ⊂ M is
saturated if s−1(S) = t−1(S).

Lemma 3.1.20. Let G ⇒ M be a Lie groupoid, and x ∈ M . Then Ox is a
saturated submanifold of M . Moreover S is saturated if and only if for all s ∈ S
we have Os ⊂ S.

Let G ⇒ M be a Lie groupoid, and S a saturated submanifold or an open
subset ofM . Then GS := s−1(S)∩t−1(S) is a submanifold of G with a canonical
Lie groupoid structure with base S.

Definition 3.1.21. The Lie groupoid GS ⇒ S is called the restriction groupoid
of G to S.

The following well known theorem helps us understand the structure of a Lie
groupoid, its orbits and isotropy Lie groups.

Proposition 3.1.22. Let G ⇒M be a Lie groupoid, and x ∈M . Then Gx is
a Lie group and a submanifold of G.

The Lie group Gx acts canonically on s−1(x) by right multiplication and
t : s−1(x)→ Ox is a right-principal Gx-bundle.

For all y ∈ Ox, there exists g ∈ G such that s(g) = x and t(g) = y. Then,
using the right multiplication by g in G, we have that s−1(y) is diffeomorphic
to s−1(x). By same reasoning, the Lie group Gy is isomorphic to Gx.

Moreover, if there exists a global section σ : Ox → s−1(x) then there is a
canonical Gx-action on GOx and (t, s) : GOx → Ox×Ox is a principal Gx-bundle.

Morphisms of Groupoids

As mentioned in remark 3.1.5, any Lie groupoid can be thought of as a smooth
category where every arrow is invertible, the space of arrows and points are
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smooth manifolds, and the composition, identity and inverse maps are smooth
maps. As such, the definition of morphism for Lie groupoids is a functor:

Definition 3.1.23. Given two Lie groupoids G ⇒ M and H ⇒ N , a
morphism of Lie groupoids is given by two smooth maps π̂ : G → H and
π : M → N such that:

• π̂ and π commute with source and target of G and H.

• for all (g, h) ∈ Gs×t G we have π̂(g ◦ h) = π̂(g) ◦ π̂(h).

• for all x ∈M we have π̂(ex) = eπ(x).

Remark 3.1.24. A consequence of definition 3.1.23 is that for all g ∈ G,
π̂(g−1) = (π̂(g))−1.

Example 3.1.25. Let G ⇒ M be a Lie groupoid and S a saturated or open
submanifold of M . Then the inclusion map given by ι : GS → G and ι : S →M
is a Lie groupoid morphism.

Example 3.1.26. Let M be a manifold, IM the identity groupoid M ⇒ M ,
G ⇒M any Lie groupoid and PM the pair groupoid M ×M ⇒M . There exist
canonical morphisms of Lie groupoids IM → G → PM given by:

• IM → G;x→ ex

• G → PM ; g 7→ (t(g), s(g))

For any Lie groupoid G ⇒M , the image of the canonical map (t, s) : G →M×M
is an equivalence relation on M . The quotient of M by this equivalence relation
is exactly the orbit space of G i.e. M/G.

Definition 3.1.27. Two groupoids G ⇒ M and H ⇒ N are isomorphic if
there exists a groupoid morphism π̂ : G → H, π : M → N such that π̂ and π are
diffeomorphisms of manifolds.

Example 3.1.28. M is diffeomorphic to N if and only if their identity groupoids
IM and IN are isomorphic (equivalently if their pair groupoids PM and PN are
isomorphic).

Example 3.1.29. Let G be a Lie group acting freely and properly on P , and
denoteM := P/G. Let P×MP be the groupoid given in example 3.1.8 and G×P
the action groupoid of example 3.1.12. The map π̂ : G× P → P ×M P ; (g, p) 7→
(gp, p) defines an isomorphism of groupoids covering the identity (the base map
π is the identity on P ).
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Groupoid actions

Let G ⇒M be a Lie groupoid (respectively, a topological open groupoid), let P
be a not necessarily Hausdorff manifold and π : P →M a surjective submersion
(resp. a surjective continuous and open map).

Definition 3.1.30. A left G-action on P is a smooth (resp. continuous) map
? : Gs×π P → P such that for all (g, h) ∈ Gs×t G and p ∈ P :

g ? (h ? p) = (g ◦ h) ? p, eπ(p) ? p = p, π(g ? p) = t(g).

Such a manifold P with a left G-action is called a left G-module and π is
called its moment map.

A right G-action over P is given by a smooth (resp. continuous) map ? : Pπ×t
G → P and satisfying:

(p ? g) ? h = p ? (g ◦ h), p ? eπ(p) = p, π(p ? g) = s(g).

To illustrate this definition, we will focus on left actions, in which case we have
the following diagram:

G y P

M

s

t π

The first and second equations of definition 3.1.30 say that the action is
associative and unital. The third equation says that every g with source
x and target y defines a smooth map g ? (−) : π−1(x)→ π−1(y).

Similarly for right actions, every g ∈ G with source x and target y defines a
map (−) ? g : π−1(y)→ π−1(x).

The following example illustrates the reason why we allow P to be a non-
Hausdorff manifold.

Example 3.1.31. Let G ⇒ M be a Lie groupoid. Then t : G → M is a left
G-module by left multiplication on G.
Moreover s : G →M is a right module and a (G,G)-bimodule 3.1.33.

The following lemma illustrates the relation between Lie group actions and Lie
groupoid actions:

Lemma 3.1.32. Let G be a Lie group acting on a manifold M . Let P be a
manifold and π : P →M a submersion. The action groupoid G×M acts on π
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(from the left) if and only if the group G acts on P (from the left) and the map
π is equivariant (i.e. π(gp) = gπ(p) for all g ∈ G and p ∈ P ).

Similarly for right actions.

Proof. (⇐) The map ? : (G×M)×M P → P ; (g, x, p) → gp defines a left Lie
groupoid action.

(⇒) The map · : G×P → P ; (g, p) 7→ (g, π(p)) ? p defines a left Lie group action
commuting with the map π.

Definition 3.1.33. A (G,H)-bimodule for Lie groupoids G ⇒M and H⇒ N
is a (not necessarily Hausdorff) manifold P with two commuting actions.

3.2 The holonomy groupoid of a regular foliation

An important example of a groupoid for this thesis is the holonomy groupoid
of a singular foliation, which in the regular case has a nice construction and a
canonical smooth structure. Indeed, it is a Lie groupoid.

In this section we introduce such a groupoid for the regular case and describe
its structure. Some references about this are [MM03] and [Wan18]. Here we
present the holonomy groupoid taking into account the definition of singular
foliations and bisubmersions.

Something that we will use to define the holonomy groupoid is the local picture
of a regular foliation.

Lemma 3.2.1. Let F be a regular foliation on M of dimension k. Then for all
x ∈M there exists a chart (U ⊂ Rn, φ) such that φ−1F is equal to the C∞c (U)
span of {∂x1 , · · · , ∂xk}.

Define the foliation Floc as the C∞c (Rn)-span of ∂x1 , · · · , ∂xk in Rn. The foliated
manifold (Rn,Floc) has some special properties. One of them is that its leaves
are given by Rk × {c} for each c ∈ Rn−k. Also, for each x, y ∈ Rn lying in the
same leaf (i.e. x = (x0, c) and y = (y0, c)), and Σx, Σy submanifolds of Rn
transverse to Floc at x and y respectively, there is a unique map from Σx to Σy
preserving the leaves. Indeed, each leaf crosses Σx once, and similarly for Σy,
as shown in figure 3.1,

In general, for any regular foliatiated manifold (M,F) and two points x, y ∈M
in the same leaf, there is no canonical map between transversals preserving
the leaf. However, choosing a path γ : [0, 1]→ M from x to y, for each point
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Figure 3.1: Floc and transversals

γ(t) there will be a chart Uγ(t) where F is isomorphic to Floc. Then using
compactness of [0, 1] there must exist finitely many tk ∈ [0, 1] such that the
family of charts {Uγ(tk)}k cover γ. Now choose a transversal Σtk to F at
each γ(tk). Because of the local picture, there will be canonical maps from
Σx → Σt1 → · · · → Σy, as shown in figure 3.2.

Figure 3.2: The map between transversals using a path γ

Lemma 3.2.2. For any regular foliatiated manifold (M,F), x, y ∈ M in
the same leaf and a path γ inside the leaf from x to y, the composition map
Σx → Σt1 → · · · → Σy doesn’t depend on the choice of tk nor of the transversals
Σtk . It only depends on the homotopy class of γ inside the leaf. Moreover, if
two curves give the same map between Σx and Σy, then they will give the same
map between any other pair of transversals Σ′x and Σ′y.

Proof. (Sketch) That the composition map Σx → Σt1 → · · · → Σy only depends
on the homotopy class of γ is a direct consequence of the fact that locally there
is no choice for the maps.
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Take two homotopic paths γ1 and γ2 and a homotopy γ : [0, 1]2 →M . For each
(t, s) ∈ [0, 1]2 there is a neighborhood U(t,s) of γ(t, s) where F is isomorphic to
Floc. Using the compactness of [0, 1]2 there will be finitely many neighborhoods
U(tk,sj) covering the homotopy, denote Uk,j := U(tk,sj).

One can choose a finite family of curves γj and a finite cover Uk,j such that,
γmin(j) = γ0, γmax(j) = γ1 and such that for each j, the family {U(k,j)}k covers
γj and γj+1. By this cover γj and γj+1 give the same map from Σx to Σy.
Comparing 2 by 2 we get that γ0 and γ1 give the same map from Σx to Σy.

For the second statement, note that U(0,0) contains Σ′x and Σx. The statement
is a direct consequence of the fact that inside U(0,0) there are no choices for the
map from Σ′x to Σx. Using U(1,1) we get a similar result for Σy and Σ′y.

Definition 3.2.3. We define an spacial groupoid. Let the space of arrows be
the following set:

Π(F) := {γ : [0, 1]→M : γ is in a single leaf}/{homotopy in the leaf}.

This space, together with the product by concatenation, the canonical source,
target, identity and inverse map, is a set theoretic groupoid over M . Call Π(F)
the monodromy groupoid of F .

We will prove that the monodromy groupoid is indeed a Lie groupoid.

Example 3.2.4. (Fundamental groupoid of M) When F = Xc(M) is the
full foliation then Π(F) is the collection of curves on M up to homotopy. This
set is also called the fundamental groupoid of M and it is denoted by Π(M).
Note that the isotropy groups of Π(M) are the fundamental groups of M . We
will show later that Π(M) is a Lie groupoid using the more general construction
for Π(F).

Definition 3.2.5. Let [γ] ∈ Π(F) and Σ0,Σ1 be two transversals at γ(0) and
γ(1) respectively. Denote γ̂ : Σ0 → Σ1 the map given in lemma 3.2.2. The map
γ̂ is called the holonomy transformation of [γ] between Σ0 and Σ1.

Smooth structure on Π(F)

For the regular foliated manifold (Rn,Floc) the monodromy groupoid Π(Floc)
has a global smooth chart given by φ : Π(Floc) → Rk × Rk × Rn−k; [γc] 7→
(γc(1), γc(0), c) where γc is a curve in Rk × {c} for some c ∈ Rn−k. Indeed
Π(Floc) is isomorphic to the Lie groupoid given in example 3.1.7.

We will use the local picture of any regular foliated manifold (M,F) to give a
chart for any [γ] ∈ Π(F). To do so, take into account the following facts:
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• Choose a chart centered at γ(0); φ0 : U ′0 → Rk ×Rn−k such that φ−1
0 F =

Floc. This chart gives immediately a transversal Σ0 := φ−1({(0, y) : y ∈
Rn−k}) at γ(0).
Similarly for γ(1), choose the chart φ1 : U ′0 → Rk × Rn−k. Which gives
the transversal Σ1 := φ−1({(0, y) : y ∈ Rn−k}).

• The holonomy transformation γ̂ defines a local map γ̂ : Σ0 → Σ1. We
will abuse notation and use Σ0 = φ0(Σ0) ⊂ {0} × Rn−k ' Rn−k and
Σ1 = φ1(Σ1) ⊂ {0} × Rn−k ' Rn−k. Therefore we will also call γ̂ the
local diffeomorphism near 0 ∈ Rn−k given by γ̂ and the compositions with
the charts φ0 and φ1.

• There exists a unique (up to homotopy) smooth map

Σ0 × [0, 1]→M ; (y, t) 7→ γy(t),

such that for all y ∈ Σ0 the curves γy sit inside a leaf of F , γ0 = γ,
γy(0) = y ∈ Σ0 and γy(1) = γ̂(y) ∈ Σ1.

• There exists U0 ⊂ U ′0 and U1 ⊂ U ′1 such that, φ0(U0) and φ1(U1) are
convex sets of Rk × Rn−k, we abuse notation and call U0 = φ0(U0) and
U1 = φ1(U1).
Because U0 ⊂ Rk×Rn−k is a convex set, the leaves of ι−1

U0
(Floc) are simply

connected. Then, there is a unique (up to homotopy) curve inside the
leaves connecting (x0, y) with (0, y), denote this curve by σ0

(x0,y). More
precisely

σ0
(x0,y)(t) := φ−1

0 ((tx0, y)).

Similarly, on U1 ⊂ Rk × Rn−k there is a unique up to homotopy curve
σ1

(x1,y) that connects (x1, γ̂(y)) with (0, γ̂(y)). More precisely

σ1
(x1,y)(t) := φ−1

1 ((tx1, γ̂(y))).

There is an open set W ⊂ Rk × Rk × Rn−k such that the following map is
injective:

φ : W → Π(F); (x1, x0, y)→ [(σ1
(x1,y)) ◦ γy ◦ (σ0

(x0,y))−1] (3.3)

where ◦ denotes the concatenation of paths and [−] the homotopy class inside
the leaves. Note that φ(0, 0, 0) = [γ], and the curve (σ1

(x1,y)) ◦ γy ◦ (σ0
(x0,y))−1

starts in φ0(x0, y) and ends in φ1(x0, γ̂(y)). See figure 3.3.

We call the pair (W,φ) of equation (3.3) a canonical chart for Π(F), since
only depends on [γ] and the charts (U0, φ0) and (U1, φ1). These injective charts
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Figure 3.3: The image of (x1, x0, y) under the chart φ.

give a locally euclidean topology on Π(F). Also, they are smoothly compatible,
giving a smooth structure on Π(F).

Moreover, Π(F) is second countable because for any point (p, q) ∈M ×M/F M
there are countably many [γ]’s going from p to q and M ×M/F M is second
countable. Therefore Π(F) is indeed a (not necessarily Hausdorff) manifold.

Proposition 3.2.6. Π(F) is indeed a Lie groupoid.

Proof. The maps t, s : Π(F)→M defined by the equations t([γ]) = γ(1) and
s([γ]) = γ(0), can be expressed locally using the canonical charts of equation
(3.3).

In this local picture we get s(x1, x0, y) = (x0, y) and t(x1, x0, y) = (x1, γ̂(y)).
Therefore t, s are submersions onto M . By analogous deduction, one can show
that the product given by concatenation, the obvious identity and inverse
maps are all smooth. As a result, Π(F) together with these maps forms a Lie
groupoid.

The monodromy groupoid also has a relation with bisubmersions in section 2.2
definition 2.2.1, as the following proposition states.

Proposition 3.2.7. Any Hausdorff open set U ⊂ Π(F), together with the maps
t|U and s|U , forms a bisubmersion of F .

Proof. In the local case, for (Rn,Floc), the monodromy groupoid is basically
Π(Floc) = Rk×Rk×Rn−k with source and target defined as t(x1, x0, y) = (x1, y)
and s(x1, x0, y) = (x0, y). The manifold Π(Floc) is clearly a bisubmersion for
Floc and so is any open subset.
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For a more general regular foliated manifold (M,F) take [γ] ∈ Π(F), φ0
and φ1 charts compatible with F at γ(0) and γ(1). The canonical chart
φ : W ⊂ Rk×Rk×Rn−k → Π(F) with the maps s(φ(x1, x0, y)) = φ0(x0, y) and
t(φ(x1, x0, y)) = φ1(x1, γ̂(y)) is a bisubmersion for F . Being a bisubmersion
is a local property, therefore for any Hausdorff open set U ∈ Π(F) the triple
(U, t, s) is a bisubmersion for F .

In fact in proposition 3.3.18 we will show that any Hausdorff open set U of a
Lie groupoid G ⇒M is a bisubmersion for a foliation on M that depends on G.

The holonomy groupoid

On Π(F) one can define an equivalence relation compatible with the Lie
groupoid structure. We say that two homotopy classes [γ] and [σ] are holonomy
equivalent [γ] ∼hol [σ] if and only if, after choosing transversals, their holonomy
transformations are equal γ̂ = σ̂.

Definition 3.2.8. The holonomy groupoid of a regular foliated manifold
(M,F) is the Lie groupoid given by H(F) := (Π(F)/ ∼hol).

We endow H(F) with the quotient topology, which makes the quotient map
Q : Π(F)→ H(F) a continuous map. Note that, for any canonical chart φ of
Π(F) we get that the map Q ◦ φ : W → Π(F)→ H(F) is injective. Therefore
the canonical charts of Π(F) can be used as charts for H(F) and endow it with
a smooth structure that makes the quotient map Π(F)→ H(F) into an étale
map.

Example 3.2.9. Let M be a connected manifold, M̂ its universal covering
space, x0 ∈M and F := Xc(M). Then Π(F) is isomorphic to the fundamental
groupoid of M which is given by (M̂ × M̂)/(π1(x0)). Moreover the holonomy
groupoid is H(M) ∼= M ×M , the pair groupoid.

Example 3.2.10. For the cilinder M = S1 × R take F with leaves S1 × {y}
for y ∈ R. Then:

• Π(F) = R×M with s(t, (θ, y)) := (θ, y) and t(t, (θ, y)) := (eitθ, y).

• H(F) = S1 ×M with s(σ, (θ, y)) := (θ, y) and t(σ, (θ, y)) := (σθ, y).

Example 3.2.11. Take M to be the Moebius band M := R× (−1, 1)/ ∼ where
(x, y) ∼ (x+ k, (−1)ky) for k ∈ Z. Let F be the foliation with leaves [R× {y}]
for fixed y ∈ (−1, 1) (see figure 4.5). Then:
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• Π(F) = R×M with s(t, [(x, y)]) := [(x, y)] and t(t, [(x, y)]) := [(t+ x, y)].

• H(F) = S1×M with s(σ, [(x, y)]) := [(x, y)] and t(σ, [(x, y)]) := [((tσ/π)+
x, y)] where tσ ∈ R is any real such that eitσ = σ.

Figure 3.4: The foliated manifold in example 3.2.11

We describe in the following proposition a different characterization of the
holonomy equivalence which will be used to generalize this notion to the non-
regular case.
Proposition 3.2.12. [γ] ∼hol [σ] if and only if there exists open neighborhoods
U, V ∈ Π(F) and morphisms of bisubmersions ϕ : U → V such that ϕ([γ]) = [σ].

Proof. Take [γ1], [γ2] ∈ Π(F), such that p := γ1(0) = γ2(0) and q := γ1(1) =
γ2(1). Take charts for p, q adapted to F and construct the canonical charts as
given in equation (3.3), say φ1 : W1 → Π(F) for [γ1] and φ2 : W2 → Π(F) for
[γ2]. Note that W1,W2 ⊂ Rk × Rk × Rn−k are open neighborhoods of (0, 0, 0);
φ1(0, 0, 0) = [γ1] and φ2(0, 0, 0) = [γ2]. We will prove that γ̂1 = γ̂2 if and only
if there is a local bisubmersion map W1 →W2 sending (0, 0, 0) to (0, 0, 0):

(⇒) If γ̂1 = γ̂2, the identity map, defined locally in (0, 0, 0) on the neighborhood
W1 ∩W2 ⊂ Rk × Rk × Rn−k, is clearly a bisubmersion map.

(⇐) Suppose that there is a local bisubmersion map ϕ : W1 → W2 sending
(0, 0, 0) to (0, 0, 0). Write ϕ = (ϕ1, ϕ2, ϕ3) and recall that s1(x1, x0, y) =
s2(x1, x0, y) = (x0, y), t1(x1, x0, y) = (x1, γ̂1(y)) and t2(x1, x0, y) = (x1, γ̂2(y)).
By easy computations, using that ϕ must commute with the sources and targets
one shows that ϕ = Id and γ̂2(y) = γ̂1(y).

3.3 Lie algebroids

In this section we introduce the notion of Lie algebroids and its relation to
singular foliations and Lie groupoids. Most of the material presented here is
not original and can be found also in [CF03], [Mac05] and [Wan18].
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Lie algebroids can be thought of as a generalization of the tangent bundle. We
will motivate this idea in the examples 3.3.3 and 3.3.4.

Definition 3.3.1. A Lie algebroid on a manifold M is a triple (A, ρ, [−,−]),
with A → M a vector bundle, ρ : A → TM a vector bundle morphism called
anchor and [−,−] a Lie bracket on the sections Γ(A), such that:

[X, fY ] = f [X,Y ] + (ρ(X)f)Y, ∀ X,Y ∈ Γ(A) and f ∈ C∞(M).

Remark 3.3.2. The map ρ : Γ(A)→ X(M) is a Lie algebra map and that ρ is
completely characterized by the Lie bracket [−,−].

Example 3.3.3. TM with the identity map and the Lie bracket on vector fields
is a Lie algebroid over M .

Note that the set of sections of TM (the vector fields on M) corresponds to
the set of derivations of the algebra C∞(M), which can be seen as sections of a
line bundle. Following this idea we give the next example:

Example 3.3.4. Let E →M be a vector bundle and T : Γ(E)→ Γ(E) be an R-
linear transformation. T is a differential operator of order 1 iff for any function
f ∈ C∞(M) the commutator [T, f ](σ) := T (fσ) − fT (σ) is a C∞(M)-linear
map, i.e. a vector bundle map. T is a covariant differential operator iff for all
f ∈ C∞(M) the commutator [T, f ] is the multiplication by a function.

Denote CDO(E) the set of covariant differential operators on the sections of
E. For any T ∈ CDO(E), the map [T,−] : C∞(M) → C∞(M) is always a
derivation. This derivation is called the symbol of T .

It is known that there exists a vector bundle D →M such that Γ(D) ' CDO(E).
On Γ(D) there is a canonical Lie bracket [−,−] given by the commutator in
CDO(E).

The equation ρ(T )(f) = [T, f ] defines an anchor ρ : D → TM . In conclusion
(D, ρ, [−,−]) is a Lie algebroid.

One of the motivations for this work is the singular foliation associated to a
Poisson manifold, therefore an important example is the following:

Example 3.3.5. Let (M,π) be a Poisson manifold. This is a manifold M
together with a bi-vectorfield π ∈ Γ(∧2TM), such that π satisfies a Jacobi
equation.

There is a map π] : T ∗M → TM ;α 7→ π(α,−) and a Lie bracket on Ω1(M)
given by the formula:

[α, β] = Lπ]αβ − Lπ]βα− π(α, β).
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(T ∗M,π], [−,−]) is a Lie algebroid and encodes the same information as the
Poisson manifold.

Before we continue let us give the notion of morphisms for Lie algebroids over
the same manifold:

Definition 3.3.6. Let (A, ρ, [−,−]A), (A′, ρ′, [−,−]A′) be Lie algebroids over
M . A map of Lie algebroids from A to A′ is a vector bundle map φ : A→ A′

covering IdM , such that the induced map on sections is a Lie algebra map.

Note that, the equality ρ′φ(x) = ρ(x) will be automatically satisfied.

Example 3.3.7. Given a Lie algebroid (A, ρ, [−,−]A), the anchor ρ : A→ TM
is a Lie algebroid map to (TM, IdTM , [−,−]).

The Lie algebroid of a Lie groupoid

A very well known result in Lie group theory is that for any Lie group G there
is an associated Lie algebra g. In a direct analogy to this case, for any Lie
groupoid G there is an associated Lie algebroid. This subsection is dedicated to
recall this construction.

Let G ⇒M be a Lie groupoid. To get a Lie algebroid from G, take into account
section 3.1 which gives us some intrinsic structures on G. We will construct a
vector bundle A on M , an anchor map ρ and a Lie bracket on Γ(A).

As the vector bundle we take A := ker(ds)|M (Identifying M as the identity
section on G). The vector bundle map ρ := dt : A → TM is the anchor map.
For the Lie bracket one must notice the following:

• Any g ∈ G gives a smooth map Rg : s−1(t(g))→ s−1(s(g));h 7→ g ◦ h.

• The space Th(s−1(x)) = ker(dhs). Therefore dRg : ker(dhs)→ ker(dg◦hs).

This gives us a way to extend a section X of A to a vector field −→X on G by−→
X g := dRg(Xs(g)).

Then the Lie bracket [X,Y ] for X,Y ∈ Γ(A) is defined by the formula
−−−→
[X,Y ] = [−→X,−→Y ].

Definition 3.3.8. Let G ⇒ M be a Lie groupoid. The Lie algebroid of G is
given by (A, ρ, [−,−]) constructed above.
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Remark 3.3.9. It is possible to make the same construction using AL :=
ker(dt)|M and the left invariant vectorfields ←−X g := dLg(Xt(g)).

Example 3.3.10. We saw in Example 3.1.9 that any Lie group is a Lie groupoid.
Following the same construction we get the Lie algebroid (g, ρ, [−.−]) where
g→ {∗} is the Lie algebra associated to G, thought of as a vector bundle over a
point; the anchor ρ is zero and the Lie bracket [−,−] is the canonical one.

Example 3.3.11. Let g be a Lie algebra. An infinitesimal action ρ : g×M →
TM is canonically a Lie algebroid. Where A = g×M is a vector bundle ρ is
the anchor map and the Lie bracket on Γ(A) is given by the Lie bracket on g.
Moreover if this action can be integrated to a Lie group action G ×M → M ,
then g×M → TM is the Lie algebroid of the action Lie groupoid G×M ⇒M .

Example 3.3.12. The Lie algebroid of the pair groupoid is TM with the identity
as anchor.

Although Example 3.3.4 is not needed in the rest of this thesis, it shows a quite
interesting object, which is widely studied and has applications in many branches
of mathematics. It is interesting to notice that there is a Lie groupoid which
integrates this Lie algebroid of covariant differential operators. We describe its
structure as follows:

Example 3.3.13. (Connection groupoid) Let M be a manifold and π : E →
M a vector bundle. Take:

G := ∪(y,x)∈M×M{ Isomorphisms Ex → Ey}.

The set G is indeed a manifold, it can be seen as the vector bundle Pr∗1E⊗Pr∗2E∗
over M ×M where Pr1,Pr2 : M ×M →M are the first and second projections.

We denote an element of G as φ(y,x) to indicate that it is a map from Ex to Ey.

• The source is defined as s : G → M ;φ(y,x) 7→ x and the target t : G →
M ;φ(y,x) 7→ y.

• The composition is given by ◦ : Gs×t G → G;φ(z,y) ◦ σ(y,x) 7→ (φ ◦ σ)(z,x).

• The identity section is e : M → G;x 7→ IdEx where IdEx : Ex → Ex is the
identity map.

• And the inverse map is given by (−)−1 : G → G;φ(y,x) 7→ φ−1
(x,y).

One can see that the Lie algebroid of G is the one of example 3.3.4 given by
covariant differential operators.



64 LIE GROUPOIDS AND LIE ALGEBROIDS

Remark 3.3.14. (Flat connections and integrability) A flat connection ∇
on a vector bundle E →M is a Lie algebra map ∇ : X(M)→ CDO(E);X 7→ ∇X
such that ∇fX = f∇X for all f ∈ C∞(M) and such that the symbol of ∇X is X.
This condition implies that ∇ can be seen as a Lie algebroid map ∇ : TM → D
where D is the vectorbundle of covariant differential operators on E. If we
suppose that M is simply connected, it is possible to integrate the connection into
a Lie groupoid map from the pair groupoid M ×M to the connection groupoid
E ⊗ E∗.

If M is not simply connected, it is still possible to integrate the connection to a
Lie groupoid map G → E ⊗ E∗, where G is the fundamental groupoid of M .
Remark 3.3.15. (Flat connections and Holonomy) From a different
perspective, a connection ∇ : X(M) → CDO(E);X 7→ ∇X gives us an
Ehresmann connection ρ∇ : π∗TM → TE. If the connection is flat then the
Ehresmann connection gives us an integrable distribution i.e. a Lie algebroid
and a regular foliation F∇ on E. Note that H(F∇), which is a groupoid over
E, coincides with the general notion of holonomy for connections.

Foliations, Lie algebroids and Lie groupoids

An important fact in this thesis is the close relation between Lie groupoids,
Lie algebroids and singular foliations. We already saw in definition 3.3.8 the
relation between Lie groupoids and Lie algebroids and in section §3.2 a groupoid
associated to a regular foliation. Here we will relate Lie algebroids with foliations
using the example 3.3.16 and proposition 3.3.17.
Example 3.3.16. (Projective foliations as Lie algebroids) Let F be a
projective foliation foliation onM (In particular regular foliations are projective),
then by Lemma 1.1.14 there exists a vector bundle A→M such that Γc(A) ∼= F
as a C∞(M)-module. Then there exists a canonical almost injective Lie algebroid
structure on A.

In particular, when F is regular, the fibers are given by Ax := Fx = {X(x) :
X ∈ F} for all x ∈M , the anchor map ρ : F → TM is the inclusion map; and
the Lie bracket on A is the usual Lie bracket on M .
Proposition 3.3.17. (Lie algebroids inducing singular foliations) Let
(A, ρ, [−,−]) be a Lie algebroid on M , then F := ρ(Γc(A)) ⊂ Xc(M) is a
singular foliation.

Proof. The setA being a vector bundle implies that F is locally finitely generated
and ρ being a map of Lie algebras implies that F is closed under the Lie
bracket.
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The following proposition shows the relation between Lie groupoids and
bisubmersions.

Proposition 3.3.18. Let G ⇒M be a Lie groupoid, A its Lie algebroid, and
F := ρ(Γc(A)) its singular foliation, where ρ is the anchor of A. Any Hausdorff
open set U ⊂ G together with t|U , s|U is a bisubmersion for F . When G is a
Hausdorff Lie groupoid, then it is also a bisubmersion.

Proof. (Sketch) Consider the set of right invariant vectorfields −→A := {−→X : X ∈
Γ(A)}, and the set of left invariant vectorfields ←−A := {←−X : X ∈ Γ(A)}. Note
that:

kerc(ds|U ) =
〈−→
A |U

〉
C∞c (U)

and kerc(dt|U ) =
〈←−
A |U

〉
C∞c (U)

.

Using this one can show that:

s−1F = t−1F =
〈

(−→A |U +←−A |U )
〉
C∞c (U)

= ker(ds|U ) + ker(dt|U ).

Example 3.3.19. Let F be a regular foliation on a manifold M . Then the Lie
algebroid of Π(F) and H(F) is F as in example 3.3.16.

3.4 Pullbacks of Lie groupoids and Lie algebroids

We will start by following the book [Mac05] by Mackenzie to present the pullback
for Lie algebroids and Lie groupoids. Later in this section, we state an original
result from [GZ19] by Marco Zambon and I, namely Lemma 3.4.6, which relates
these two notions with the pullbacks of singular foliations.

Before we start, we recall two lemmas that will be used repeatedly. The first
one is Lemma 2.3.1, which we already introduced in §2.3:

Lemma 2.3.1. Let A and B be manifolds, k ≥ 0, and f : A→ B a surjective
submersion with k-connected fibers. If B is k-connected then A is k-connected.

The second one is a well known fact on topology and differential geometry:

Lemma 3.4.1. Let A,B,C be topological spaces (or manifolds) and f : A→ C
a continuous map (or smooth map). If g : B → C is a continuous and open map
(or a submersion), then Pr1 : Af×g B → A is also a continuous and open map
(or a submersion), where the domain is endowed with the subspace topology.
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Moreover, if g is surjective then Pr1 also is.

Af×g B B

A C

Pr2

Pr1
g

f

Proof. We will only prove that the map Pr1 is open. We leave as exercise the
smooth and surjective cases.

Take U an open set in Af×g B and a ∈ Pr1(U), it suffices to show that a is an
interior point of Pr1(U).

There exists b ∈ B such that (a, b) ∈ U , moreover because U is open there exists
open sets UA ⊂ A and UB ⊂ B such that (a, b) ∈ (UA × UB) ∩ (Af×g B) ⊂ U .

Take U ′A := UA ∩ f−1(g(UB)) note that U ′A is an open neighborhood of a and
moreover that U ′A ⊂ Pr1(U), which proves that a is in the interior of Pr1(U).

Now we are ready to define the pullback of a Lie groupoid. Please note that
this definition is analogous for topological groupoids.

Definition 3.4.2. Given a Lie groupoid G ⇒ M (or a topological groupoid)
and a surjective submersion π : P →M (or a continuous map), the manifold

π−1G := Pπ×t Gs×π P

is the space of arrows of a Lie groupoid over P . (The source and target maps
are the first and third projections and the multiplication is induced by the
multiplication on G). This Lie groupoid is called the pullback groupoid of G
by π.

Proposition 3.4.3. If G ⇒ M is a Lie groupoid (or an open topological
groupoid) and π : P →M is a surjective submersion (or a continuous open and
surjective map), then π−1G is a Lie groupoid (or an open topological groupoid).

Proof. We show that the target map of π−1G is a submersion (or open map). The
first projection Pr1 of Gs×π P is a submersion by lemma 3.4.1, since π : P →M
is a submersion. Hence the composition t◦Pr1 is a submersion. Again by lemma
3.4.1, this implies that the first projection of Pπ×t◦Pr1 (Gs×π P ) = π−1G is a
submersion, and this is precisely the target map of π−1G. For the source map,
proceed similarly. For open topological groupoids proceed similarly.
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Moreover in the setting of Lemma 3.4.5, if G is source k-connected and π has
k-connected fibers, by lemma 2.3.1 we get that that π−1G is source k-connected.

Now we introduce the pullback of a Lie algebroid:

Definition 3.4.4. Given a Lie algebroid A over a manifold M with anchor
# : A→ TM , and a surjective submersion π : P →M , one checks that

π−1A := π∗(A)#×dπ TP

is the total space of a vector bundle over P . It has a natural Lie algebroid
structure, with anchor #̂ := pr2 : π−1A→ TP being the second projection. The
Lie bracket is determined by its restriction to “pullback sections”, which is given
by the Lie brackets on X(P ) and Γ(A). We call this Lie algebroid the pullback
algebroid of A over π.

These two definitions are nicely related by the following lemma:

Lemma 3.4.5. Consider a surjective submersion π : P →M .

(i) Let G be a Lie groupoid over M , denote by A its Lie algebroid. The Lie
algebroid of the Lie groupoid π−1G is π−1A.

(ii) Let A be an integrable Lie algebroid over M , denote by G the source simply
connected Lie groupoid integrating it. If the map π has simply connected
fibers, then the source simply connected Lie groupoid integrating π−1A is
π−1G.

Proof. The proof of part (i) can be found in [Mac05, §4.3], so we address only
the proof of part (ii). The Lie groupoid π−1G integrates π−1A by part (i).
Therefore we only need to show that π−1G is source simply connected. Take
p ∈ P . Its source fiber is

s−1(p) = {(q, g, p) : π(p) = s(g) and π(q) = t(g)} ' Pπ×t s−1(π(p)).

The canonical submersion s−1(p)→ s−1(π(p)) has simply connected fibers, since
the π-fibers are simply connected. Using that s−1(π(p)) is simply connected
and lemma 2.3.1 we conclude that s−1(p) is simply connected.

The following original result relates the two definitions above with the pullback
of foliations:

Lemma 3.4.6. Consider a surjective submersion π : P →M . Let A be a Lie
algebroid over M with anchor # : A→ TM . Then the foliation of the pullback
Lie algebroid FP := #̂(Γc(π−1A)) equals π−1(FM ), where FM := #Γc(A).
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Proof. For the inclusion “⊃” we argue as follows. For all X ∈ π−1(FM ) we
have:

dπ(X) = f1π
∗(Y1) + . . . fnπ

∗(Yn) (3.4)

for some Y1 . . . Yn ∈ FM and f1, . . . , fn ∈ C∞c (P ). There exists α1, . . . , αn ∈
Γc(A) such that #(αi) = Yi. Denote β̂ := f1π

∗α1 + · · ·+ fnπ
∗αn, a section in

Γπ∗A. Using eq. (3.4) we get that (β̂,X) ∈ Γc(π−1A) and moreover #(β̂) = X,
so X ∈ #(Γc(π−1A)).

For the other inclusion take (β̂,X) ∈ Γc(π−1A). The module of sections of A
is finitely generated due to the Serre-Swan theorem, hence β̂ ∈ Γc(π∗(A)) can
be written as β̂ = f1π

∗α1 + · · · + fnπ
∗αn for some f1, . . . , fn ∈ C∞c (P ) and

α1, . . . , αn ∈ Γc(A). Since π is a submersion, each #αi ∈ FM can be lifted
via π to a vector field Xi on P . By construction

∑
i fiXi lies in π−1(FM ).

The conclusion follows since the difference X −
∑
i fiXi lies in Γc(kerπ∗), and

therefore in π−1(FM ).

3.5 Morita Equivalence for Lie groupoids and Lie
algebroids

In examples 3.1.10 (the identity groupoid) and 3.1.11 (the Čech groupoid), we
saw two Lie groupoids that are similar, in the sense that both represent the
manifold M in two different ways. By definition the Čech groupoid G ⇒ M̂ is
the pullback of the identity groupoid M ⇒M under the canonical surjective
submersion M̂ → M , where M̂ is the disjoint union of an open cover of M .
Having this in mind helps to illustrate the following definition by Mackenzie in
[Mac05]:

Definition 3.5.1. Two Lie groupoids G ⇒ M and H ⇒ N are Morita
equivalent if there exists a (Hausdorff) manifold P , and two surjective
submersions πM : P → M and πN : P → N such that π−1

M G ∼= π−1
N H as

Lie groupoids.

In this case, we call (P, πM , πN ) a Morita equivalence between G and H.

If G and H are open topological groupoids, it is asked for P to be a topological
space, πM , πN to be open surjective maps and π−1

M G ∼= π−1
N H as topological

groupoids.

Remark 3.5.2. Recall that provided an open topological groupoid G ⇒M , and
π : P → M a surjective open map then π−1G is an open topological groupoid
over P .
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One of the most important implications of this section is proposition 3.5.16.
There we will show a relation between Morita equivalence of Lie groupoids, Lie
algebroids and Hausdorff Morita equivalence of singular foliations.

Equivalent characterizations of Morita equivalence for Lie
groupoids

Definition 3.5.1 is equivalent to several other characterizations of Morita
equivalence for Lie groupoids, as was proved in [MM05], (see also [LGSX09]). An
analogous statement holds also for open topological groupoids, upon replacing
submersions by continuous open maps. In this subsection we recall these results
and prove implications that are used later, the main one being corollary 3.5.11.

We start recalling the notion of weak equivalence, as given in [Pro96, §1.3], and
of bitorsor.
Definition 3.5.3. Let H⇒M and G ⇒ P be two Lie groupoids (respectively,
topological groupoids). A morphism π̂ : G → H is a weak equivalence if:

(i) G → π−1H; γ 7→ (t(γ), π̂(γ), s(γ)) is an isomorphism,

(ii) t ◦ Pr1 : Hs×π P → M is a surjective submersion (resp. a surjective
continuous and open map).

Here π : P →M denotes the base map covered by π̂.
Remark 3.5.4. i) Looking at a groupoid as a small category, a weak

equivalence is the same thing as a fully faithful and essentially surjective
functor.

ii) When a map π : P →M is completely transverse (transverse to the orbits
and meeting every orbit) to a Lie groupoid H⇒M , then the projection
π−1H → H is a weak equivalence.

iii) If H is an open topological groupoid and π is a continuous, open and
surjective map, then condition (ii) in definition 3.5.3 is automatically
satisfied, as can be showed using lemma 3.4.1.

Recall definition 3.1.30 (of Lie groupoid actions), in which a Lie groupoid
G ⇒ M acts on a not necessarily Hausdorff manifold P via a moment map
π : P →M .
Definition 3.5.5. If the left G-action is free and proper (the map ? : Gs×π P →
P is proper) then P/G is a manifold and we say that P is a G-principal left
bundle. Similarly with a right G-action.
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Definition 3.5.6. A (G,H)-bimodule P that is principal with respect to both
actions and such that P/G ∼= N and H\P ∼= M is called a (G,H)-bitorsor.

Example 3.5.7. Any Lie groupoid G ⇒ M is a (G,G)-bitorsor, with the
canonical actions given by left and right multiplication on G.

The following statement can be found in [MM05, §2.5]

Lemma 3.5.8. Consider a Lie groupoid Γ ⇒ K, a Γ-principal bundle S, a
Γ-module Q and a map f : Q → S preserving the Γ actions. Then Q/Γ is a
manifold.

The following proposition gives a equivalent characterizations of ME for Lie
groupoids.

Proposition 3.5.9. Let G ⇒M and H⇒ N be Lie groupoids. The following
statements are equivalent:

(i) There exists a Lie groupoid Γ and two weak equivalences Γ → G and
Γ→ H.

(ii) There exists a (G,H)-bitorsor P .

(iii) G and H are Morita equivalent (Def. 3.5.1).

The proof of this statement can be found in [MM05] and [LGSX09, prop. 2.4].
We review its proof here.

Proof. (i) ⇒ (ii): Consider a Lie groupoid Γ ⇒ K with weak equivalences
π̂M : Γ → G and π̂N : Γ → H. Therefore Γ ∼= π−1

M G ∼= π−1
N H. We get that

QG := Gs×πM K is a (G,Γ)-bitorsor. Using a similar argument we get that QH
is a (Γ,H)-bitorsor. The (not necessarily Hausdorff) manifold Q := (QG×KQH)
has a diagonal Γ-action with the canonical map to K as moment map. Applying
Lemma 3.5.8 to the map Q→ QG we see that

P := (QG ×K QH)/Γ

is a (not necessarily Hausdorff) manifold. One can check that it is a (G,H)-
bitorsor.

(ii) ⇒ (iii): Consider a (G,H)-bitorsor P , with moment maps πM : P → M
and πN : P → N . Then

Γ = Gs×πM PπN×t H
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has a natural structure of Lie groupoid over P with t(g, p, h) = gph, s(g, p, h) =
p and multiplication given canonically by G and H. Then the maps Γ →
π−1
M G; (g, p, h) 7→ (p, g−1, gph) and Γ → π−1

N H; (g, p, h) 7→ (p, h, gph) are
isomorphisms of Lie groupoids.

This shows that π−1
M G ∼= π−1

N H as Lie groupoids over the not necessarily
Hausdorff manifold P . Now take a Hausdorff cover {Ui}i∈I of P and let
P̃ := tiUi. There is a canonical submersion π : P̃ → P . It is easy to see that
(P̃ , πM ◦ π, πN ◦ π) is a Morita equivalence.

(iii) ⇒ (i): Given a Morita equivalence (P, πM , πN ) between G and H, call
Γ := π−1

M G ∼= π−1
N H. The natural projections Γ → G and Γ → H are weak

equivalences.

Remark 3.5.10. Proposition 3.5.9 also holds for open topological groupoids,
as can be proven using Lemma 3.4.1. For arbitrary topological groupoids, this is
not the case.

Corollary 3.5.11. Let k ≥ 0. If G ⇒M and H⇒ N are source k-connected
Morita equivalent Hausdorff Lie groupoids, then there exists a Hausdorff (G,H)-
bitorsor P . Moreover this bitorsor is a Morita equivalence with k-connected
fibres (in the sense of Def. 3.5.1).

Proof. Following the implications (iii)⇒ (i)⇒ (ii) in the proof of proposition
3.5.9, one sees that the bitorsor P constructed there is Hausdorff. Then use the
implication (ii)⇒ (iii) to prove that P is a Morita equivalence.

Note that P being a bitorsor, the fibres of πM : P → P/H∼= M are diffeomorphic
to the source fibers of H, which are k-connected by assumption. A similar
argument holds for the fibres of πN : P → P/G ∼= N .

Remark 3.5.12. The Morita equivalence P in corollary 3.5.11 is a (global)
bisubmersion for the underlying foliations, as we now show. Using the implication
“(ii)⇒ (iii)” in proposition 3.5.9 we get an isomorphism of Lie groupoids

π−1
M G ∼= π−1

N H ∼= G n P oH.

Denote by FM and FN the foliations underlying G and H. Using lemma 3.4.5
i) and lemma 3.4.6 we get that the foliations underlying π−1

M G and π−1
N H are

π−1
M FM and π−1

N FN respectively. Since P is a (G,H)-bitorsor, the foliation
underlying the Lie groupoid GnP oH is Γc(ker(dπM )) + Γc(ker(dπN )). Hence

π−1
M FM = π−1

N FN = Γc(ker(dπM )) + Γc(ker(dπN )).
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Morita equivalence for Lie algebroids

The definition of Morita equivalence was extended to Lie algebroid by Viktor
Ginzburg [Gin01]:

Definition 3.5.13. Consider Lie algebroids AM and AN over manifoldsM and
N respectively. We say they are Morita equivalent if there exists a manifold
P and two surjective submersions πM : P →M and πN : P → N with simply
connected fibres such that π−1

M (AM ) ∼= π−1
N (AN ) as Lie algebroids over P .

This definition can be motivated by the following proposition:

Proposition 3.5.14. (i) If GM and GN are Morita equivalent Hausdorff Lie
groupoids with source simply connected fibres, then their Lie algebroids are
Morita equivalent.

(ii) If AM and AN are Morita equivalent integrable Lie algebroids, then the
source simply connected Lie groupoids integrating them are Morita equivalent.

Proof. (i): By corollary 3.5.11 we obtain the existence of a Morita equivalence
with source simply connected fibres, then using part (1) of lemma 3.4.5 we get
the desired result.

(ii): is clear by part (2) of lemma 3.4.5.

Remark 3.5.15. The essential difference between Morita equivalence for Lie
algebroids and Hausdorff Morita equivalence for singular foliations (Def. 3.5.13
and Def. 2.3.2) is that the former requires simply connected fibres whereas the
latter only connected fibres. This difference is reflected at the groupoid level too,
as we now explain.

On the one hand, given two Morita equivalent integrable Lie algebroids, their
source simply connected Lie groupoids are Morita equivalent, see proposition
3.5.14(ii). On the other hand, singular foliations also have an associated
groupoid, namely the holonomy groupoid defined by Androulidakis and Skandalis
[AS09]. In theorem 4.5.1 we will show that if two singular foliations are
Hausdorff Morita equivalent, then their holonomy groupoids are also Morita
equivalent. But the holonomy groupoid of a foliation does not have simply
connected fibres in general: on the contrary, it is an adjoint groupoid.

Recall that Lie groupoids give rise to Lie algebroids, which in turn give rise to
singular foliations (see example 3.3.8 and proposition 3.3.17). The following
proposition gives a link between Morita equivalence in these three different
settings:
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Proposition 3.5.16. Let G ⇒ M and H ⇒ N k-connected Hausdorff Lie
groupoids for k ≥ 1, denote their Lie algebroids by AM and AN , and denote by
FM = #(Γc(AM )) and FN = #(Γc(AN )) the corresponding singular foliations.
Each of the following statements implies the following one (i.e. (i)⇒ (ii)⇒
(iii)):

(i) G and H are Morita equivalent,

(ii) there exists a manifold P and surjective submersions with k − connected
fibres πM : P →M and πN : P → N satisfying π−1

M AM ∼= π−1
N AN ,

(iii) the foliated manifolds (M,FM ) and (N,FN ) are Hausdorff Morita
equivalent.

Proof. For the first implication, use corollary 3.5.11 to get P , then we use twice
part (i) of lemma 3.4.5. The second implication follows using twice lemma
3.4.6.

Remark 3.5.17. If AM and AN are Morita equivalent Lie algebroids then
their singular foliations are Morita equivalent. Indeed, the fibres of the maps
appearing in Def. 3.5.13 are in particular connected, so the above proposition
applies.

Example 3.5.18. Consider two connected Lie groups G1, G2 acting freely and
properly on a manifold P with commuting actions. The transformation groupoids
G2 n (P/G1) and G1 n (P/G2) are Morita equivalent, since under the quotient
maps P → P/Gi they pull back to the transformation groupoid (G1 ×G2) n P .
Hence applying proposition 3.5.16 we obtain an alternative proof of the statement
of corollary 2.5.8, i.e. the respective foliations are Hausdorff Morita equivalent.

Moreover, if G1, G2 are simply connected, then their corresponding Lie algebroids
are Morita equivalent.





Chapter 4

Holonomy groupoids and
Morita equivalence for
foliations

In this chapter we summarize the results of article [GZ19] by Marco Zambon
and I. It is the most important chapter of this thesis.

We start this chapter describing the notion of holonomy groupoid of a singular
foliation given in [AS09]. Later we discuss smoothness issues of this groupoid.
In the third section we will prove that the pullback groupoid of the holonomy
groupoid, under certain maps, is the holonomy groupoid of the pullback foliation.
Then we will give the notion of holonomy transformation for elements in the
holonomy groupoid.

To finish this chapter we show how Hausdorff Morita equivalence of singular
foliations is related to Morita equivalence of their associated holonomy groupoids.

4.1 The holonomy groupoid of a singular foliation

We review the construction of the holonomy groupoid of a foliated manifold,
which was first introduced by Androulidakis and Skandalis in [AS09]. For this
section we follow [AS09, §2, §3.1]. We also present some original results on the
underlying topology of this groupoid.

75
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In this whole section we fix a foliated manifold (M,F). The "building blocks" for
the holonomy groupoid of F are the path-holonomy bisubmersions (definition
2.2.1).

Let (M,F) be a foliated manifold, x0 ∈ M a point and X1, . . . , Xk ∈ F a
collection of vector fields such that their modular classes under Ix0F , which we
denote by [X1], · · · , [Xk], are a basis for Fx0 := F/Ix0F . Recall that the path
holonomy bisubmersions are given by an open neighborhood W ⊂ Rk ×M of
(0, x0), with s = PrM and t given the flows of X1, · · · , Xk.

Note that neighbourhoods of points of the form (0, x) in a path holonomy
bisubmersion carry the identity diffeomorphism on M and can be embedded in
any bisubmersion that also carries the identity diffeomorphism. This follows
from proposition 2.2.10 (ii) and corollary 2.2.14 (ii).

The holonomy groupoid will be given by a family of path holonomy
bisubmersions, glued together by an equivalence relation, which we describe as
follows:

Definition 4.1.1. Let (M,F) be a foliated manifold, (U1, t1, s1) and (U2, t2, s2)
bisubmersions for F , u1 ∈ U1 and u2 ∈ U2. We say that u1 is equivalent to u2
if there is a local morphism of bisubmersions ϕ : U1 ⊃ U ′1 → U2 with ϕ(u1) = u2.

An equivalent description of this equivalence is given by the following lemma:

Lemma 4.1.2. Let (M,F) be a foliated manifold and (U1, t1, s1), (U2, t2, s2)
bisubmersions for F . The elements u1 ∈ U1 and u2 ∈ U2 are equivalent if and
only if U1 and U2 carry the same local difeomorphism at u1 and u2 respectively.

Proof. It is a direct consequence of corollary 2.2.14 (i).

It is easy to see that definition 4.1.1 gives an equivalence relation on any family
of bisubmersions.

Definition 4.1.3. Let U = {Ui}i∈I a family of bisubmersions of F .

• A bisubmersion U ′ is adapted to U if for any u′ ∈ U ′ there is u ∈ U ∈ U
which is equivalent to u′. A family of bisubmersions U ′ is adapted to U if
any element U ′ ∈ U ′ is adapted to U .

• We say that U is an atlas if:

1. For all x ∈ M there exists U ∈ U that carries the identity
diffeomorphism locally at x.
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2. The inverses and finite compositions of elements in U are adapted to
U .

• Two atlases are equivalent if they are adapted to each other.

Example 4.1.4. Let G ⇒M be a Lie groupoid and FG its associated foliation.
If G is Hausdorff then (G, t, s) is a bisubmersion and an atlas for FG. Indeed
through the identity bisection e : M → G we have that G satisfies condition 1. of
definition 4.1.3; and thanks to the inverse and composition of G, it also satisfies
condition 2.

If G is not Hausdorff, take UG := {Ui}i∈I a Hausdorff cover for G. Then UG is
an atlas of bisubmersions for FG.

Proposition 4.1.5 (Groupoid of an atlas). Let (M,F) be a foliated manifold
and U = {(Ui, ti, si)}i∈I an atlas of bisubmersions for F .

(i) Denote the set:
G(U) := {(ti∈IUi) / ∼} ,

where ∼ is the equivalence relation given in definition 4.1.1.
Let Q = (qi)i∈I : ti Ui → G(U) be the quotient map.

(ii) There are maps t, s : G(U)→M such that s ◦ qi = si and t ◦ qi = ti.

(iii) There is a groupoid structure on G(U) with set of objects M , source and
target maps s and t defined above and such that qi(u)qj(v) = qUi◦Uj (u, v).

Given a foliated manifold (M,F) and an atlas of bisubmersions U = {Ui}i∈I
for F , we endow G(U) with the quotient topology, i.e. the finest topology that
makes the quotient map: Q : ti Ui → G(U) continuous.

Lemma 4.1.6. Given a foliated manifold (M,F) and an atlas of bisubmersions
U = {Ui}i∈I for F , the quotient map Q : ti Ui → G(U) is open.

Proof. We will prove that given an open subset A of tiUi, the preimage
Q−1(Q(A)) is open.

Take x ∈ Q−1(Q(A)). Denote by U ∈ U the bisubmersion such that x ∈ U .
There exists y ∈ A such that Q(x) = Q(y). Notice that A itself is a bisubmersion.
By the definition of the equivalence relation in proposition 4.1.5, there is a
neighbourhood U ′ ⊂ U of x and a morphism of bisubmersions f : U ′ → A
sending x to y. Hence Q(U ′) ⊂ Q(A), or in other words U ′ ⊂ Q−1(Q(A)),
therefore x is an interior point of Q−1(Q(A)).
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Lemma 4.1.7. If the atlas U1 is adapted to U2 then

(i) there is a canonical injective open morphism of topological groupoids
ϕ : G(U1)→ G(U2),

(ii) ϕ is surjective if and only if U2 equivalent to U1. In that case ϕ is an
isomorphism of topological groupoids.

Proof. The map ϕ is induced by morphisms of bisubmersions. More precisely:
there is a well defined map ϕ̂ : tU∈U1 U → G(U2), given by u 7→ [f(u)] where f
is any morphism of bisubmersions from a neighbourhood of u to a bisubmersion
in U2. Following the same argument as in the proof of Lemma 4.1.6 we get that
ϕ̂ is an open map. Also ϕ̂ factors through the quotient map Q1, yielding an
open, continuous and injective map ϕ.

tU∈U1U

G(U1) G(U2).

Q1
ϕ̂

ϕ

(4.1)

This map is surjective if and only if for any u2 ∈ U2 ∈ U2 there is an u1 ∈ U1 ∈ U1
equivalent to it, i.e. if U2 is adapted to U1.

Definition 4.1.8. Let (M,F) be a foliated manifold. A path holonomy atlas
is an atlas generated by a family of path holonomy bisubmersions {(Ui, ti, si)}i∈I
such that ∪si(Ui) = M .

The following lemma implies easily corollary 4.1.10 and corollary 4.1.12, which
together are the content of [AS09, Examples 3.4(3)].

Lemma 4.1.9. Let (M,F) be a foliated manifold. Let U ⊂ Rn ×M be a path
holonomy bisubmersion, and V any atlas of bisubmersions for F . Then U is
adapted to V.

Proof. We have to show that around any point of U there is a locally defined
morphism of bisubmersions to an element of V, see definition 4.1.3.

Let u = (v, x) ∈ U . If v = 0 we can simply apply Remark 2.2.15, so in
the following we assume v 6= 0. Denote by X1, . . . , Xn the vector fields in F
used to construct the path holonomy bisubmersion U . Extend v to a basis
v1 := v, v2, . . . , vn of Rn, and consider the path holonomy bisubmersion Ũ given
by the local generators

∑
i v

1
iXi, . . . ,

∑
i v
n
i Xi of F . The points u ∈ U and

((1, 0, . . . , 0), x) ∈ Ũ are equivalent by corollary 2.2.14(i), since the constant
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bisections through them carry the same diffeomorphism. Hence in the rest of
the proof we can assume that v = (1, 0, . . . , 0).

Since X1 is compactly supported and hence complete, we can consider the path
γ : [0, 1] → M,γ(h) = expx(hX1), where exp denotes the time one flow. For
every h ∈ [0, 1], apply the diffeomorphism exp(hX1) to X1, . . . , Xn. This yields
elements of F , the first one being X1, which form a generating set for F near
γ(h). Denote by Uh the path holonomy bisubmersion they give rise to.

By remark 2.2.15 there exists an open neighborhood U ′h of (0, γ(h)) and a
morphism of bisubmersions from U ′h to a bisubmersion in V. Shrinking U ′h if
necessary, we can assume that it is of the form Brh ×M ′h where Brh ⊂ Rn is
the open ball with radius rh and M ′h ⊂M .

By the compactness of [0, 1], there are finitely many h1, . . . , hk ∈ [0, 1] such
that M ′h1

, . . . ,M ′hk cover the image of γ. Hence there is a positive integer N
such that, for all h ∈ [0, 1], the point ( 1

N v, γ(h)) is contained in one of the U ′hi .
The composition(

v

N
, γ
(N − 1

N

))
◦ · · · ◦

(
v

N
, γ
( 1
N

))
◦
( v
N
, x
)

(4.2)

is well-defined1. Further, it is equivalent to u = (v, x) ∈ U since the constant
bisections through u and through the composition (4.2) both carry the
diffeomorphism exp(X1). Since each of the elements we are composing in
(4.2) lies in the domain of a morphism of bisubmersions to a bisubmersion in V ,
the composition also does.

Corollary 4.1.10. (i) A path holonomy atlas is adapted to any atlas.

(ii) Any two path holonomy atlases are equivalent. Therefore any of them
defines the same (up to isomorphism) topological groupoid.

Proof. (i) A path holonomy atlas consists of finite compositions of path holonomy
bisubmersions. Hence the statement follows from lemma 4.1.9.

(ii) An immediate consequence of part (i) is that any pair of path holonomy
atlases are adapted to each other, therefore they define the same topological
groupoid.

Definition 4.1.11. Let (M,F) be a foliated manifold. The groupoid over M
associated to a path holonomy atlas, as in Proposition 4.1.5, is called holonomy
groupoid and is denoted H(F).

1For instance, t(( v
N
, x)) = expx( 1

N
X1) = γ( 1

N
).
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Corollary 4.1.12. There exists a canonical injective open morphism of
topological groupoids

ϕ : H(F)→ G,

where G is any groupoid given by an atlas of bisubmersions for F as in
Proposition 4.1.5.

Proof. This follows from corollary 4.1.10 (i) applied to the atlas defining G, and
from lemma 4.1.7 (i).

Because of corollary 4.1.12, we can see the holonomy groupoid as an open
neighborhood of the identity for any groupoid G given by an atlas of
bisubmersions. We will later prove that it is the source connected component
of G.

Definition 4.1.13. Let S be a family of source connected bisubmersions such
that ∩U∈Ss(U) = M and for every u ∈ U ∈ S there is an element eu ∈ U
carrying the identity diffeomorphism nearby s(u). The atlas U generated by S
is called a source connected atlas.

In particular any path holonomy atlas is a source connected atlas.

Lemma 4.1.14. Take U a source connected atlas, then the groupoid G(U) is
source connected.

Proof. Take S the family of bisubmersion of definition 4.1.13 with atlas U .
Denote by Q : tU∈U U → G(U) the (surjective) quotient open map.

Note that, by hypothesis for all U ∈ S, the points of Q(U) can be connected to
the identity through a continuous path in an s-fiber of G(U). Now we prove the
same statement for any point of Q(Uk◦· · ·◦U1), where k ≥ 2 and Uk, . . . , U1 ∈ U .

By induction, suppose that the statement holds for all points of Q(Uk−1◦· · ·◦U1).
Take u :=uk×· · ·×u1 ∈ Uk◦· · ·◦U1, and denote p := s(uk) ∈M . By hypothesis
there exists a curve γ(t) in a source fibre of Uk joining uk with up ∈ Uk that
carries the identity at p. Then Q(γ(t) × · · · × u1) is a curve in an s-fibre of
H(F) that connects Q(u) with an element of Q(Uk−1 ◦ · · · ◦ U1). Hence the
statement holds for Q(Uk ◦ Uk−1 ◦ · · · ◦ U1).

Corollary 4.1.15. The holonomy groupoid of a foliated manifold (M,F) is a
source connected, open topological groupoid.
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Proof. By Lemma 4.1.14 any path holonomy atlas U , which is a source connected
atlas, gives rise to a source connected groupoid, therefore H(F) := G(U) is
source connected.

To prove that H(F) is an open groupoid, denote by Q : tU∈U U → H(F) the
quotient map. The following diagram commutes, where we denote by sH the
source map of the holonomy groupoid:

tU∈UU

H(F) M

sQ

sH

Recall that H(F) is endowed with the quotient topology. Using that Q is
continuous and surjective, and that s is a submersion and therefore an open
map, it follows that sH is open map. A similar argument can be used for
tH .

A new result is the following:

Proposition 4.1.16. If U is a source connected atlas then G(U) ' H(F).

Proof. By Cor. 4.1.12 we get the existence of a natural injective open morphism
of topological groupoids ϕ : H(F)→ G(U).

It is sufficient to show that ϕ is surjective. Note that by lemma 4.1.14, H(F)
and G(U) are s-connected. It is a general fact that any s-connected topological
groupoid is generated by any symmetric neighbourhood of the identities [Mac05].
Using that ϕ is an open morphism covering the identity we get that G(U) is
generated by the image of ϕ, which implies that ϕ is surjective.

Moreover, there is a minimality property for the holonomy groupoid, given by
the following corollary:

Corollary 4.1.17. Let G ⇒ P be a source connected Lie groupoid and FG its
associated foliation. Then H(FG) ∼= G/ ∼ where the latter equivalence relation
identifies two points when they carry the same local diffeomorphism. This implies
that there is a surjective morphism G → H(FG).

Proof. Let SG be a Hausdorff cover of a neighborhood of the identity bisection
in G such that e(s(U)) ⊂ U for all U ∈ SG . Denote US the atlas generated
by SG . Then US is a source connected atlas, so that G(UG) ∼= H(FG) by Prop.
4.1.16. One can show that US is adapted to the atlas UG given in example 4.1.4,
and therefore that G(UG) ∼= G/ ∼. Consequently, H(FG) ∼= G/ ∼.
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Remark 4.1.18. A Lie groupoid is called effective if the only bisection carrying
the identity is the identity bisection. Any Lie groupoid G ⇒M can be turned
into a effective open topological groupoid, by G/ ∼ where the latter equivalence
relation identifies two points when they carry the same local diffeomorphism.
Then any effective source connected Lie groupoid is isomorphic to the holonomy
groupoid of its associated singular foliation.

Corollary 4.1.19. If F is a regular foliation, then H(F) coincides with the
usual notion of holonomy groupoid given in Section 4.1.

Proof. Note that Π(F) is a source connected atlas for F . By Cor.4.1.19, it is
sufficient to show that two homotopy classes of curves [γ1], [γ2] ∈ Π(F) have
the same holonomy transformation if and only if there exists a local map of
bisubmersions sending [γ1] 7→ [γ2]. This is a clear consequence of Proposition
3.2.12.

4.2 Smooth structure on the holonomy groupoid

The smooth structure on the holonomy groupoid, when it exists, is as follows:

Definition 4.2.1. Given a foliated manifold (M,F) and an atlas of bisub-
mersions U = {Ui : i ∈ I} for F , we say that G(U) is smooth if there exists
a (necessarily unique) smooth structure on it that makes the quotient map
Q : ti Ui → G(U) a submersion.

It is easy to see that if G(U) is smooth, then it is a Lie groupoid. One of the
most important results of this section is theorem 4.2.3, in which it is shown
that the smooth structure of the holonomy groupoid does not depend on the
chosen atlas.

With this aim, we check the compatibility of smooth structures on equivalent
atlases, using the canonical maps of Lemma 4.1.7.

Lemma 4.2.2. Consider two atlases of bisubmersions U1 and U2, with U1
adapted to U2:

(i) If there is a smooth structure on G(U1) and G(U2), then the morphism
of groupoids ϕ : G(U1)→ G(U2) of Lemma 4.1.7 is an injective (smooth)
submersion and a morphism of Lie groupoids.

(ii) Assume that G(U1) is smooth and U2 is adapted to U1 (or equivalently that
the map ϕ : G(U1)→ G(U2) is surjective). Then G(U2) is smooth and ϕ is
an isomorphism of Lie groupoids.
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Proof. (i) Consider x ∈ G(U1) and y ∈ img(ϕ) ⊂ G(U2). Because U1 is adapted
to U2, there is a bisubmersion Ux ∈ U1 and a smooth map ϕx : Ux → tU2U .
Because y ∈ img(ϕ), there is a bisubmersion Uy ∈ U2 and a smooth map
φy : Uy → tU1U . Because of the smooth structures on G(U1) and G(U2), the
maps Q1 : tU1U → G(U1) and Q2 : tU2U → G(U2) are smooth submersions.
Therefore we have the following commutative diagram:

Ux Uy

tU1U tU2U

G(U1) G(U2)

i

ϕx

i

φy

Q1 Q2

ϕ

Because of the commutativity of the diagram, ϕ must be a smooth map and a
submersion.

(ii) Since ϕ is a homeomorphism by lemma 4.1.7 (ii), we can use it to transport
the smooth structure on G(U1) to G(U2). With this structure the map ϕ is
a submersion (it is a diffeomorphism). By the proof of statement (i), for all
y ∈ tU2U , the following diagram commutes:

Uy

tU1U tU2U

G(U1) G(U2)

i

φy

Q1 Q2

ϕ

Here Q1 ◦ φy and ϕ are submersions, so Q2 is a submersion.

Theorem 4.2.3. If for a source connected atlas U we have that G(U) is
smooth, then the groupoids of any two source connected atlases are smooth
and diffeomorphic. In other words, the smooth structure on the holonomy
groupoid is well defined.

Proof. This is a direct consequence of Lemma 4.2.2.
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Corollary 4.2.4. The smooth structure on the holonomy groupoid of a regular
foliation is well defined and it is diffeomorphic to the classical notion given in
Section 4.1.

Proof. This is a direct consequence of Corollary 4.1.19, Theorem 4.2.3 and the
fact that the quotient map Q : Π(F)→ H(F) is a smooth submersion (indeed,
it is a local diffeomorphism).

Moreover, we have the following proposition, which is a direct consequence
of [AZ17, §1.2]. It states explicitly when there is a smooth structure on the
holonomy groupoid.

Proposition 4.2.5. Given a foliated manifold (M,F), we have that H(F) is
smooth if and only if F is projective.

Longitudinal smooth structure on the Holonomy groupoid

The holonomy groupoid of a foliated manifold (M,F) is not always smooth,
but by results of Claire Debord [Deb13], for any point x ∈M there is a smooth
structure on the restriction of the holonomy groupoid to the leaf L through
x, making it a Lie groupoid (and consequently on the isotropy group at x,
making it a Lie group). More precisely, following [AZ13, Def. 2.8], there exists
a smooth structure on H(F)L – the restriction of the holonomy groupoid to
the leaf–, such that for any path holonomy atlas {Ui} of F , the quotient map
QL : ti (Ui)L → H(F)L is a submersion.

4.3 Pullback holonomy groupoid

In this section we show that the holonomy groupoid of the pullback foliation
is the pullback of the holonomy groupoid of the foliation. This fact will be
used later in §4.5, where we will derive relations between Hausdorff Morita
equivalence of singular foliations and Morita equivalence of their respective
holonomy groupoids.

An isomorphism of topological groupoids

We prove the following isomorphism of topological groupoids, which is one of
the main results of this thesis.
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Theorem 4.3.1. Let (M,F) be a foliated manifold and π : P →M a surjective
submersion with connected fibres. Then there is a canonical isomorphism of
topological groupoids

H(π−1(F)) ∼= π−1(H(F)).

The pullback of a topological groupoid is defined as in Def. 3.4.2. For the sake
of exposition, we first sketch a proof of Theorem 4.3.1 in the case of regular
foliations.

Proof of theorem. 4.3.1 for regular foliations. Assume that F is a regular
foliation, then π−1F is also a regular foliation. In this case the holonomy
groupoid is given by holonomy classes of paths, as in Section 4.1. Define the
groupoid morphism

ϕ : H(π−1(F))→ π−1(H(F))

[τ ] 7→ (τ(1), [π(τ)], τ(0)).

We show that this map is injective. Take two paths τ, τ̃ in leaves of P with
the same initial point p0 and final point p1. For i = 0, 1, if Σi is a transversal
to π−1(F) at pi then π(Σi) is a transversal of F at π(pi). Let Φ, Φ̃ : Σ0 → Σ1
be the holonomy maps given by τ and τ̃ respectively, and φ, φ̃ : π(Σ0)→ π(Σ1)
the holonomy maps given by π(τ) and π(τ̃). The following diagram commutes:

Σ0 Σ1

π(Σ0) π(Σ1)

π

Φ

π

φ
,

and the analog diagram for Φ̃, φ̃ too. The vertical maps π : Σi → π(Σi) are
diffeomorphisms (notice that the codimensions of F and π−1F are equal). Hence
if π(τ) and π(τ̃) have the same holonomy, i.e. φ = φ̃, then Φ = Φ̃.

To prove the surjectivity of ϕ, take (p, [γ], q) ∈ π−1(H(F)) where p, q ∈ P
and γ is a curve in a leaf of F that connects π(q) with π(p). The hypotheses
on π imply that Pr1 : γ∗P := [0, 1]γ×π P → [0, 1] is a surjective submersion
with connected fibres, hence γ∗P is a connected manifold and therefore a path
connected space. Take a curve σ : [0, 1]→ γ∗P that connects (0, q) with (1, p).
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We have the following commutative diagram:

[0, 1] γ∗P = [0, 1]γ×π P P

[0, 1] M.

σ

Pr1

Pr2

π

γ

The curve γ̂ := Pr2 ◦ σ lies in a leaf of π−1(F) and joins q with p. Since
Pr1 ◦ σ : [0, 1]→ [0, 1] is a continuous and surjective function homotopic to the
identity, from the commutativity of the diagram it follows that π ◦ γ̂ and γ are
homotopy equivalent and so holonomy equivalent. Hence ϕ([γ̂]) = (p, [γ], q),
proving that ϕ is surjective and therefore bijective.

We now turn to the proof of Theorem 4.3.1. The first step is to state and prove
proposition 4.3.5, which requires some preparation. We first focus on pullbacks
of atlases of bisubmersions, which are relevant for the l.h.s. of the isomorphism
claimed there. We state first [AS09, Lemma 2.3], which allows us to pull back
bisubmersions.

Lemma 4.3.2. Let (M,F) be a foliated manifold, (U, t, s) a bisubmersion for
F and π : P → M a surjective submersion. Consider the preimages P s :=
π−1(s(U)) and P t := π−1(t(U)). Define

π−1(U) := P t
π×t U s×π P s.

Let τ, σ : π−1(U) → P be the projections onto the first and third component.
Then (π−1(U), τ, σ) is bisubmersion for π−1(F).

Proof. The following diagram commutes:

π−1(U) P

U M

PrU

σ

τ

π

s

t

Moreover, since π is a submersion one can prove that τ and σ are submersions.
For the same reason PrU is a submersion, and applying lemma 2.2.7 to it
we obtain that (π−1(U), t ◦ PrU , s ◦ PrU ) is a bisubmersion for F . Using the
commutativity of the diagram we get that (π−1(U), τ, σ) is a bisubmersion for
π−1F .

Definition 4.3.3. We call the bisubmersion π−1(U) given in lemma 4.3.2 the
pullback bisubmersion of U .
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Lemma 4.3.4. Let U be an atlas of bisubmersions for F . Then π−1U :=
{π−1(U) : U ∈ U} is an atlas of bisubmersion for π−1(F).

Proof. It is clear that the union of the elements of π−1U covers P . We now
check that the compositions of elements in π−1U are adapted to π−1U . To do
so, take U2, U1 ∈ U . Note that we have a canonical morphism of bisubmersions

π−1(U2)◦π−1(U1)→ π−1(U2◦U1); (p, u2, a)×(a, u1, q) 7→ (p, u2×u1, q). (4.3)

Moreover, since U is an atlas, at each point u2 × u1 the bisubmersion U2 ◦U1 is
adapted to some Uu1×u2 ∈ U . This means that there is a small neighbourhood
V ′ ⊂ U1 ◦ U2 containing u2 × u1, and a morphism of bisubmersions f : V ′ →
Uu1×u2 . Composing a suitable restriction of the morphism (4.3) with the natural
“lift” of f we obtain a morphism of bisubmersions

(p, u2, a)× (a, u1, q) 7→ (p, f(u2 × u1), q) ∈ π−1(Uu1×u2)

into an element of π−1U . For inverses of elements in π−1U one proceeds
similarly.

Proposition 4.3.5. Let U be an atlas of bisubmersions on a foliated manifold
(M,F), and denote by G(U) the groupoid given by U . Let π : P → M be a
surjective submersion, π−1U the pullback atlas, and denote by G(π−1U) the
groupoid of this atlas. Then there is a canonical isomorphism of topological
groupoids

G(π−1U) ∼= π−1(G(U)).

Proof. The quotient map Q : tU∈U U → G(U) lifts to a canonical map

Id×Q× Id :
(
tU∈Uπ−1U

)
→ π−1(G(U)), (p, u, q) 7→ (p, [u], q), (4.4)

where we denote [u] := Q(u). We will show that this map factors through the
projection map associated to the atlas π−1U , determining a map Φ: G(π−1U)→
π−1(G(U)), which moreover is an isomorphism of topological groupoids.(

tU∈Uπ−1U
)

G(π−1U) π−1(G(U))

Id×Q×Id
Qπ

Φ

(4.5)

The fact that Φ is well-defined and injective follows from the claim below
(respectively, from the implications “⇒” and “⇐”). The surjectivity of Φ is
clear because the map Id×Q× Id given in (4.4) is surjective. The fact that Φ
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is a homeomorphism holds because both Qπ and Id×Q× Id are open maps,
by lemma 4.1.6. The map Φ is a groupoid morphism as a consequence of
proposition 4.1.5 (iii) and of the morphism of bisubmersions (4.3). Hence we are
left with proving the following claim for all (p0, u0, q0), (p0, v0, q0) ∈ tU∈Uπ−1U .

Claim: Qπ(p0, u0, q0) = Qπ(p0, v0, q0) in G(π−1U) if and only if [u0] = [v0] in
G(U).

“⇒”: By assumption there exist bisections σu and σv through (p0, u0, q0) and
(p0, v0, q0) respectively, carrying the same diffeomorphism of P . Since π is a
submersion, there exists a neighbourhood W of π(q0) ∈ M and a π-section
q : W → P , such that q(π(q0)) = q0. Finally Pr2 ◦ σu ◦ q is a bisection through
u0 carrying the same diffeomorphism of M as the bisection Pr2 ◦ σv ◦ q through
v0. Therefore [u0] = [v0] in G(U).

“⇐”: Let u0 ∈ U and v0 ∈ V be equivalent points of tU∈UU , and let p0, q0 ∈ P
lie in the fibre of t(u0) = t(v0) and s(u0) = s(v0) respectively. Then there
exists a neighbourhood U ′ of u0 inside U and a morphism of bisubmersions
f : U ′ → V such that f(u0) = v0. Lifting it we get a morphism of bisubmersions

f̂ : π−1U ′ → π−1V ; (p, u, q) 7→ (p, f(u), q)

such that f̂(p0, u0, q0) = (p0, v0, q0). This shows that Qπ(p0, u0, q0) =
Qπ(p0, v0, q0) in G(π−1U).

We now take the second step for the proof of Theorem 4.3.1.

Proposition 4.3.6. Let π : P →M be a surjective submersion with connected
fibres and F a foliation on M . Let U be a path holonomy atlas for F . There is
a canonical isomorphism of topological groupoids

H(π−1(F)) ∼= G(π−1(U)).

Proof. Proposition 4.3.4 shows that π−1(U) is an atlas of bisubmersions for
π−1F . Because π is source connected, we get that π−1(U) is a source connected
atlas and by proposition 4.1.16 we get the desired result.

Proof of theorem. 4.3.1. Let U be a path holonomy atlas for F . We have a
composition of isomorphisms

H(π−1(F)) ∼= G(π−1(U)) ∼= π−1(H(F)),

where the first isomorphism is the one obtained in proposition 4.3.6 and the
second isomorphism is given by proposition 4.3.5 using H(F) = G(U).
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Preservation of smoothness

The isomorphism of Theorem 4.3.1 preserves smooth structures, whenever they
are present. We now elaborate on this. Recall that the smoothness was defined
in Definition 4.2.1. That definition fits well with the isomorphism given in
Proposition 4.3.6, as follows:

Lemma 4.3.7. Let U be an atlas on a foliated manifold (M,F), and let
π : P → M be a surjective submersion. Assume that G(U) is smooth. Then
G(π−1U) is also smooth, and the map G(π−1U) ∼= π−1(G(U)) in proposition
4.3.5 is an isomorphism of Lie groupoids.

Proof. Being the pullback of a Lie groupoid by a submersion, π−1(G(U)) is a
Lie groupoid. Since the map in proposition 4.3.5 is a homeomorphism, we can
use it to transport the smooth structure on π−1(G(U)) to G(π−1U). Since the
quotient map Q onto G(U) is a submersion, it follows that the map Id×Q× Id
given in eq. (4.4) is a submersion too. The commutativity of diagram (4.5)
implies that Qπ is a submersion onto G(π−1U) endowed with the above smooth
structure. The uniqueness in definition 4.2.1 finishes the argument.

The smooth version of Theorem 4.3.1 is the following:

Proposition 4.3.8. Let π : P →M be a surjective submersion with connected
fibres and F a foliation on M . If H(F) is smooth (i.e. if F is a projective
foliation by proposition 4.2.5) then the map ϕ : H(π−1(F)) ∼= π−1(H(F)) given
in theorem. 4.3.1 is an isomorphism of Lie groupoids.

Proof. Let U be a path holonomy atlas of F . We check that the composition

H(π−1(F)) ∼= G(π−1(U)) ∼= π−1(H(F))

appearing in the proof of Theorem 4.3.1 is a composition of Lie groupoid
isomorphisms. The second map is a Lie groupoid isomorphism, by Lemma 4.3.7.

The first map is a Lie groupoid isomorphism: apply Lemma 4.2.2 (ii) to
U2 := π−1U (which is an atlas of bisubmersion for π−1F by lemma 4.3.4), to a
path holonomy atlas U1 of π−1F , and use that ϕ is surjective (see proposition
4.3.6).

Even when the holonomy groupoid is not smooth, the map ϕ : H(π−1(F)) ∼=
π−1(H(F)) given in Theorem 4.3.1 preserves the longitudinal smooth structure,
as the following theorem says:
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Proposition 4.3.9. Let π : P →M be a surjective submersion with connected
fibres, F a foliation on M and U a path holonomy atlas for F . The
map ϕ : H(π−1(F)) ∼= π−1(H(F)) of theorem 4.3.1 restricts to the following
isomorphisms of Lie groupoids:

(i) (H(π−1(F)))
L̂
∼= (π−1(H(F)))

L̂
, for the restrictions to any leaf L̂ ⊂ P ,

(ii) (H(π−1(F)))p ∼= (π−1(H(F)))p, for the isotropy Lie groups at any p ∈ P .

Remark 4.3.10. There is canonical isomorphism of Lie groups (π−1(H(F)))p ∼=
H(F)π(p).

Proof. We prove only (i), since (ii) is a direct consequence. Any leaf in P is of
the form L̂ = π−1(L) for some leaf L in M . We have

(π−1(H(F)))
L̂

= L̂π×t (H(F)L)s×π L̂π = π−1(H(F )L).

Take a path holonomy atlas U = {Ui}i∈I for F and note that (π−1Ui)L̂ =
L̂π×t ((Ui)L)s×π L̂π. The map QL : ti (Ui)L → H(F)L is a submersion, by
the above definition of smooth structure on H(F)L, therefore the map

Id×QL × Id : ti (π−1Ui)L̂ → (π−1H(F))
L̂

is a submersion.

This allows us to apply the arguments of the proof of lemma 4.3.7 to groupoids
over L̂ (rather than over P ). The proof of proposition 4.3.8 delivers the desired
conclusion.

4.4 Holonomy transformations

Given a regular foliation, a classical construction, recalled in Section 4.1,
associates to every path in a leaf its holonomy (a germ of diffeomorphisms
between slices transverse to the foliation). We review the extension of this
construction to singular foliations [AZ14, §2] and show that it is invariant under
pullbacks.

Definition 4.4.1. Let (M,F) be a singular foliation, and x, y ∈ M lying in
the same leaf. Fix a transversal Sx at x, as well as a transversal Sy at y. A
holonomy transformation from x to y is an element of

GermAutF (Sx, Sy)
exp(IxF)|Sx

.
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Here GermAutF (Sx, Sy) is the space of germs at x of locally defined
diffeomorphisms preserving F mapping Sx to Sy, restricted to Sx. Further
exp(IxF)|Sx is the space of germs at x of time-one flows of time-dependent
vector fields in IxF mapping Sx to itself, restricted to Sx.

Holonomy transformations are relevant because the holonomy groupoid maps
canonically into them [AZ14, theorem. 2.7].

Theorem 4.4.2. Let x, y ∈ (M,F) be points in the same leaf L, and fix
transversals Sx at x and Sy at y. Then there is a well defined map

ΦF : H(F)yx →
GermAutF (Sx, Sy)

exp(IxF)|Sx
, h 7→ 〈τ〉. (4.6)

Here τ is defined as follows, given h ∈ H(F)yx:= t−1(y) ∩ s−1(x):

• take any bisubmersion (U, t, s) in the path-holonomy atlas with a point
u ∈ U satisfying [u] = h,

• take any section b̄ : Sx → U of s through u transverse to the t-fibers such
that (t ◦ b̄)(Sx) ⊂ Sy,

and define τ := t ◦ b̄ : Sx → Sy.

For all x, y the map ΦF is injective [AZ14, theorem. 2.20] and assembles to a
groupoid morphism [AZ14, theorem. 2.7]. In the case of regular foliations, the
map ΦF describes the usual geometric notion of holonomy.

Remark 4.4.3. Linearizing any representative of ΦF (h) one associates to h
a well-defined linear map TxSx → TySy. Notice that TxSx can be identified
with the normal space NxL to the leaf at x. Hence, when x = y, we obtain a
representation of the isotropy Lie group H(FM )xx on NxL [AZ14, §3.1].

Let (M,F) be a foliated manifold and π : P →M a surjective submersion with
connected fibers. Recall that there is a canonical surjective morphism

π̂ : H(π−1(F)) ∼= π−1(H(F))→ H(F),

where the isomorphism is given in Theorem 4.3.1. We now show that the
holonomy transformations associated to a point in H(π−1(F)) and to its image
coincide.
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Proposition 4.4.4. For every h ∈ H(π−1(F)), the holonomy transformations
associated to h and to π̂(h) coincide, under the obvious identifications. More
precisely: fix slices Sx at x := s(h) ∈ P and Sy at y := t(h), transverse to
π−1(F). Then

Φπ
−1(F)(h) ∈

GermAutπ−1(F)(Sx, Sy)
exp(Ixπ−1(F))|Sx

and
ΦF (π̂(h)) ∈

GermAutF (Sπ(x), Sπ(y))
exp(Iπ(x)F)|Sπ(x)

coincide under the diffeomorphisms Sx ∼= Sπ(x) := π(Sx) and Sy ∼= Sπ(y) :=
π(Sy) obtained restricting π.

Proof. Let h ∈ H(π−1(F)). By theorem. 4.4.2, Φπ−1(F)(h) is obtained using a
bisubmersion V in the path-holonomy atlas of (P, π−1(F)), a point v ∈ V with
[v] = h, and a certain section through v. By proposition 4.3.6 the groupoid
H(π−1(F)) is isomorphic to G(π−1(U)), which is constructed out of the atlas
π−1(U) where U is a path-holonomy atlas for (M,F). This means that there is
a bisubmersion U in U and a morphism of bisubmersions

ψ : V → π−1(U)

defined near v. We have ψ(v) = (y, u, x) ∈ π−1(U) for some u ∈ U . Further,
applying ψ to any bisection of V we obtain a bisection of π−1(U) carrying the
same diffeomorphism. Hence we can work on the latter bisubmersion instead of
on V .

Take any section b̄ : Sx → π−1(U) of s through (y, u, x) transverse to the t-fibres
such that (t ◦ b̄)(Sx) ⊂ Sy. Due to the diffeomorphism Sx ∼= Sπ(x), there is a
unique section b : Sπ(x) → U through u such that

b̄(p) = (∗, b(π(p)), p)

for any p ∈ Sx. (Here ∗ denotes the unique point of Sy that corresponds to
(t ◦ b)(π(p)) under the identification Sy ∼= Sπ(y).) The diffeomorphisms

t ◦ b̄ : Sx → Sy and t ◦ b : Sπ(x) → Sπ(y)

coincide under the natural identification between slices. The former is a
representative of Φπ−1(F)(h), while the latter is a representative of ΦF ([u]). We
conclude noticing that [u] = π̂(h), as can be seen using the proof of proposition
4.3.5.
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4.5 Morita equivalent holonomy groupoids

The holonomy groupoid of a singular foliation (see definition 4.1.11) is not a
Lie groupoid in general, but just an open topological groupoid. Recall that we
defined Morita equivalence for open topological groupoids in Section 3.5, more
precisely in Definition 3.5.1.

We now can finally state the main results of this thesis:

Theorem 4.5.1. Given two foliated manifolds (M,FM ) and (N,FN ). If they
are Hausdorff Morita equivalent then:

• Their holonomy groupoids H(FM ) and H(FN ) are Morita equivalent as
open topological groupoids.

• For LM a leaf of FM and LN the corresponding leaf of FN , we have
that H(FM )|LM and H(FN )|LN are Morita equivalent as Lie groupoids.
(Therefore the isotropy Lie groups are isomorphic).

• If FM is projective (for example a regular foliation), then FN is projective
and the Lie groupoids H(FM ) and H(FN ) are Morita equivalent as Lie
groupoids.

Proof. For the first part apply twice theorem 4.3.1, noticing that submersions
are open maps.

For the second part use twice Proposition 4.3.9.

For the projective case, Proposition 4.2.5 and Proposition 4.3.8 give us the
desired result.

Furthermore, combining with Corollary 3.5.11 we obtain:

Proposition 4.5.2. Provided their holonomy groupoids are Hausdorff, two
projective foliations are Hausdorff Morita equivalent iff their holonomy groupoids
are Morita equivalent as Lie groupoids.

Revisiting Hausdorff Morita equivalence of singular foliations

In the definition of Hausdorff Morita equivalence between two singular foliations
(M,FM ) and (N,FN ), Def. 2.3.2, it is required that the maps πM : P → M
and πN : P → N be surjective submersions with connected fibers. It is tempting
to think that Hausdorff Morita equivalence of singular foliations can be phrased
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weakening these three conditions, i.e. that adopting weaker conditions one
obtains the same equivalence classes of singular foliations. This is not the case:

Proposition 4.5.3. We do not obtain the same equivalence classes of singular
foliations if we replace any of the three conditions in Def. 2.3.2 as follows:

• “Surjective” by “meets every leaf of the singular foliation”,

• “Submersion” by “is transverse to the singular foliation” [AS09, Def. 19],

• “With connected fibres“ by “such that the preimages of leaves are
connected”.

Remark 4.5.4. The first two items above are motivated by what occurs for Lie
groupoids. The Morita equivalence of two Lie groupoids G ⇒M and H⇒ N can
be equivalently phrased by replacing the condition that the maps πM : P →M
and πN : P → N in Def. 3.5.1 are surjective submersions with the following
condition: these maps are transversal to the orbits of the Lie groupoids (G and
H respectively) and meet every orbit. This fact can be found in [Mac05] and
[CM17], and follows also from Proposition 3.5.9.

To prove Proposition 4.5.3 it suffices to display examples of maps π : P → (M,F)
in which each of the conditions on the left hand side is weakened and so that
the holonomy groupoid H(π−1F) is not Morita equivalent to H(F). Indeed, in
this case, (P, π−1F) and (M,F) can not be Hausdorff Morita equivalent, due
to Theorem 4.5.1.

We now display the examples mentioned above, involving only regular foliations.

Example 4.5.5. (“Surjective” is needed) Take M to be the Moebius band

M := R× (−1, 1)/ ∼

where (x, y) ∼ (x+ 3k, (−1)ky) for k ∈ Z. Take

P := M\{(2, 0)},

the Moebius band without a point in the “middle circle" (the equivalence class
of (2, 0)).

Let
π : P ↪→M

be the inclusion. On M take the regular (rank one) foliation F given by
horizontal vector fields, then π−1(F) is also given by horizontal vector fields.
Note that π is a submersion with connected fibres that meets every orbit, but it
is not surjective.
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The isotropy group at (0, 0) ∈M of the holonomy groupoid H(F) is isomorphic
to Z2. But the isotropy group at (0, 0) ∈ P of the holonomy groupoid H(π−1F)
is trivial (the leaf through that point is contractible). Therefore the two holonomy
groupoids can not be Morita equivalent.

Figure 4.1: The manifold P

Example 4.5.6. (“Submersion” is needed) Take P := Rt (R\{0}), M :=
R, and define π : P → M so that it sends the copy of R to the point 0 ∈ M
and R\{0} to M by the inclusion. On M take the full foliation. The map π is
surjective, has connected fibres and it is transverse to the foliation in M , but it
is not a submersion.

The pullback foliation on P is also the full foliation, but P has three connected
components. Hence the spaces of leaves are not homeomorphic and the holonomy
groupoids are not Morita equivalent.

Example 4.5.7. (“With connected fibres” is needed) This example is a
variation of Ex. 4.5.5. Take the Moebius band M as in that example. Let

M ′ := R× (−1, 1)/ ∼′

where (x, y) ∼′ (x+ k, (−1)ky) for k ∈ Z. Notice that M ′ is a smaller Moebius
band, and since the equivalence classes of ∼ are contained in those of ∼′, there
is a natural quotient map q : M →M ′ which is a 3 to 1 covering map.

Let P be M with a point removed, as in Ex. 4.5.5. Let

π′ : P →M ′

be the restriction of q to P . On M ′ take the regular (rank one) foliation given
by horizontal vector fields. Then π′ is a surjective submersion with connected
preimages of leaves, but whose fibres are not connected (all fibres consist of
three points, except for one that consists of two points). As in the first example,
the isotropy groups of the corresponding holonomy groupoids are Z2 at the point
(0, 0) ∈M ′ and the trivial group at (0, 0) ∈ P . Hence the holonomy groupoids
can not be Morita equivalent.
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An extended equivalence for singular foliations

Our notion of Hausdorff Morita equivalence (Def. 2.3.2) has certain drawbacks,
which originate from the fact that the space of arrows of a Lie groupoid is not
necessarily Hausdorff:

• If two non-Hausdorff source connected Lie groupoids are Morita equivalent,
then their singular foliations might not be Hausdorff Morita equivalent.
(Compare with Proposition 3.5.16).

• As a consequence, we have to add a Hausdorffness assumption2 in
Proposition 4.5.2 on projective foliations.

In an attempt to extend the notion of Hausdorff Morita equivalence so that
the above drawbacks do not occur, we propose to allow the manifold P in Def.
2.3.2 to be non-Hausdorff.

A first issue to address is the notion of singular foliation on a non-Hausdorff
manifold. In section §1.5 we saw that on a (Hausdorff) manifold, Def. 1.1.5 (in
terms of compactly supported vector fields) is equivalent to the characterisation
given in that section (in terms of subsheaves). On a non-Hausdorff manifold
V , this is no longer the case. Indeed the notion obtained extending trivially
Def. 1.1.5 is quite restrictive, the main reason being that there might be points
p ∈ V where all compactly supported vector fields vanish. However the sheaf of
smooth vector fields on V (a sheaf of C∞-modules) is well-behaved. Hence we
propose to define a singular foliation on a possibly non-Hausdorff manifold V
as an involutive, locally finitely generated subsheaf of the sheaf of smooth vector
fields.

A second issue to address is how to extend the notion of pullback foliation to
a non-Hausdorff manifold. In section §1.5, for a Hausdorff manifold the sheaf
associated to a pullback foliation is given by ̂ι−1

U (π−1F) = π̂|−1
U F for every open

subset U . For a non-Hausdorff manifold V and a submersion π : V →M to a
manifold, we define the pullback foliation as the following subsheaf Sπ−1F of
the sheaf of vector fields: for any open (possibly non-Hausdorff) subset U ⊂ V ,

Sπ
−1F (U) := {X ∈ X(U) : X|H ∈ π̂|−1

H F for all open Hausdorff subsets H ⊂ U}

With the above ingredients at hand we can propose the following definition.
2Notice that a Hausdorffness assumption is needed also to match the Morita equivalence

of Lie groupoids and Lie algebroids, see Proposition 3.5.14.
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Definition 4.5.8. Two singular foliations (M,FM ) and (N,FN ) are Morita
equivalent if there exists a possibly non-Hausdorff manifold P and two
surjective submersions with connected Hausdorff fibres πM : P → M and
πN : P → N such that Sπ−1

M
FM = Sπ−1

N
FN as subsheaves of XP .

P

(M,FM ) (N,FN )

πM πN

We then expect

• the following extension of Proposition 3.5.16: if two (possibly non-
Hausdorff) Lie groupoids are Morita equivalent, then their singular
foliations are Morita equivalent.

• to carry out the construction of the holonomy groupoid (Def. 4.1.11)
starting from the sheaf-theoretic characterization of singular foliation, even
for a non-Hausdorff foliated manifold. Further we expect the following
improvement of Theorem 4.5.1 to hold:
Morita equivalent singular foliations have holonomy groupoids which are
Morita equivalent as open topological groupoids.

• the following improvement of Proposition 4.5.2: Two projective singular
foliations are Morita equivalent iff their holonomy groupoids are Morita
equivalent as Lie groupoids.





Chapter 5

Quotients of foliated
manifolds

In this section we assume the following setting: a foliated manifold (P,F) with
a surjective submersion π : P →M with connected fibers. Here M is seen as a
quotient of P . We first show that, under some compatibility conditions between
F and π, there exists a singular foliation FM on M given by a push-forward of
F . Then we study the foliated manifold (M,FM ) as a quotient of (P,F).

In the first section we will show that there exists a surjective morphism of
topological groupoids Ξ: H(F) → H(FM ), which implies that H(FM ) is a
quotient of H(F). In the second section we give some preliminaries on quotients
of Lie groupoids.

In the third section we will recall Lie 2-groups and their relation with quotients
of groupoids. Finally in the fourth section we give a characterization of the
Ξ-fibers, and describe a Lie 2-group action on H(F) with orbits lying inside
these fibers.

5.1 Quotients of holonomy groupoids

In this section we show that given a surjective submersion with connected fibers
π : P → M and an “invariant” singular foliation F on P there is an induced
singular foliation FM on M , which can be regarded as a quotient of the former.
The main statement of this section is that the holonomy groupoid of FM is

99
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a quotient of the holonomy groupoid of F , see Thm. 5.1.3. We also give an
explicit characterization of the quotient map when F is a pullback-foliation.

The main Theorem

We recall [AZ13, Lemma 3.2], about quotients of foliated manifolds.

Proposition 5.1.1. Let π : P →M be a surjective submersion with connected
fibers. Let F be a singular foliation on P , such that Γc(ker dπ) ⊂ F . Then
there is a unique singular foliation FM on M with π−1(FM ) = F .

In this section we consider the following set-up:

A foliated manifold (P,F) and a surjective submersion with connected fibers
π : P →M , such that

[Γc(ker dπ),F ] ⊂ Γc(ker dπ) + F . (5.1)

Denote by FM the singular foliation on M satisfying

Fbig = π−1FM . (5.2)

where Fbig := Γc(ker dπ) + F , as in proposition 5.1.1

The foliation FM is obtained from F by a quotient procedure, more precisely
FM = π∗F , see Lemma 5.1.9 ii) at the end of this section. By this fact it is
natural to ask whether the same is true for the respective holonomy groupoids.
The answer is true and we will discuss it in Theorem 5.1.3. To continue we use
the following lemma which is proven at the end of this section.

Lemma 5.1.2. Any source connected atlas U for F satisfies that the family

πU := {(U, π ◦ t, π ◦ s) : U ∈ U},

generates a source connected atlas for FM .

Recall that a source connected atlas is an atlas generated by a family of
bisubmersion which carry the identity diffeomorphism and are source connected,
as definition 4.1.13. The groupoid of a source connected atlas for F is the
holonomy groupoid of F (See Prop. 4.1.16).
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Theorem 5.1.3. Let U be a source connected atlas for F , by Lemma 5.1.2, the
family πU := {πU := (U, π ◦ t, π ◦ s) : U ∈ U} generates a source connected
atlas for FM . The map Ξ given as follows is a surjective open morphism of
topological groupoids covering π:

Ξ: H(F)→ H(FM ); [u] 7→ [u]M , (5.3)

where [u]M is the class of u ∈ πU ∈ πU as a bisubmersion for FM . Note that
the construction of Ξ is canonical.

Moreover, if H(F) and H(FM ) are smooth then Ξ is a surjective submersion.

Proof. The map Ξ is well defined. If u1 ∈ U1 ∈ U and u2 ∈ U2 ∈ U are
equivalent, then exists a morphism of bisubmersions sending u1 to u2, using this
same morphism it is clear that u1 ∈ πU1 ∈ πU is equivalent to u2 ∈ πU2 ∈ πU
as bisubmersions for FM .

The image of Ξ lies indeed inside H(FM ). By construction Ξ(H(F)) =
QM (tU∈UπU). Then by Lemma 5.1.2 the family πU generates a source
connected atlas UM for FM , then QM (tU∈UπU) ⊂ QM (tU∈UMπU) = H(FM )
is an open subset. It is also clear that Ξ covers π and sends the identity bisection
of H(F) to the identity bisection of H(FM ), then Ξ(H(F)) is an neighborhood
of the identities of H(FM ).

To prove that it is a morphism of set theoretic groupoids we only need to prove
that it preserves the composition. This is equivalent to the following statement:
for any U1, U2 ∈ U we have that the map π(U1 ◦ U2)→ πU1 ◦ πU2; (u1, u2) 7→
(u1, u2) is a morphism of bisubmersions for FM , which is clearly true.

To see that Ξ is an open morphism of topological groupoids we only need to
check that it is a continuous open map. This is clear because for any U ∈ U
the identity map U → πU ;u 7→ u is a continuous open map. Recall that the
topology on H(F) and H(FM ) is the quotient topology, which makes the maps
Q : U → H(F) and QM : πU → H(FM ) continuous. One sees also that these
maps are open under this topology (see Lemma 4.1.6).

Note that, if H(F) and F(FM ) are Lie groupoids, using the same argument
as before, one check that Ξ is a submersion (the maps Q : U → H(F) and
QM : πU → H(FM ) are submersions).

The map Ξ is surjective. Recall that Ξ(H(F)) is a neighborhood of the identities
of H(FM ). Because Ξ is a morphism of topological groupoids Ξ(H(F)) is
a symmetric set closed under compositions. It is well known that any s-
connected topological groupoid is generated by any symmetric neighborhood of
the identities [Mac05]. Because H(FM ) is s-connected then Ξ(H(F)) = H(FM )
and Ξ is surjective.
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Remark 5.1.4. Note that by the proof of Theorem 5.1.3, the family πU :=
{πU := (U, π ◦ t, π ◦ s) : U ∈ U} is indeed a source connected atlas for FM .

For regular foliations, the morphism Ξ admits a familiar description.

Proposition 5.1.5. When both F and FM are regular foliations, the morphism
Ξ: H(F)→ H(FM ) can be easily described by

Ξ([γ]hol) = [π ◦ γ]hol,

for each curve γ : [0, 1]→ P inside a leaf of F . Here [−]hol denotes holonomy
classes.

Proof. The Lie groupoids H(F) and H(FM ) are source connected atlases for
F and FM respectively. The map π̂ : H(F) → H(FM ); [γ]hol 7→ [π ◦ γ]hol is
a submersion, since its a Lie groupoid morphism integrating the fiber-wise
surjective Lie algebroid morphism π∗. This implies that (H(F), tM ◦ π̂, sM ◦ π̂)
is a bisubmersion for FM , by [AS09, Lemma 2.3]. Notice that the latter triple
equals (Π(F), π ◦ t, π ◦ s), which hence is a bisubmersion.

We can thus compute
Ξ([γ]hol) = [π ◦ γ]hol,

where the first equality holds by the above description of Ξ and the fact that
π̂ : (H(F), π ◦ t, π ◦ s)→ (H(FM ), tM , sM ) is a morphism of bisubmersions.

We present an example where F is a regular foliation and FM is a genuinely
singular foliation. Notice that the holonomy groupoid of the former foliation
has discrete isotropy groups, whereas for the latter the isotropy groups are not
discrete in general.

Example 5.1.6. Consider the cylinder P := S1×R with coordinates (θ, y) and
the regular foliation1 F given by the integral curves of the nowhere vanishing
vector field X := ∂θ + y∂y. The circle U(1) acts on the cylinder P by rotations
of the first factor, preserving the foliation F . The singular foliation Fbig on P
has three leaves (two open leaves, separated by the middle circle). The quotient
map

π : P = S1 × R→M := P/U(1) ∼= R

is the second projection. On the quotient, the induced foliation is FM = 〈y∂y〉,
a genuinely singular foliation.

1The foliation F is the quotient by the natural Z-action of the foliation on the x-y-plane
whose leaves are given by graph(ex+c) on the open upper plane, graph(−ex+c) on the open
lower plane (with c varying through all real numbers), and the line {y = 0}.
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For the holonomy groupoids, we have H(F) = R × P , the transformation
groupoid of the action of the Lie group R on P by the flow of X, which
reads φt(θ mod 2π, y) = (θ + t mod 2π, ety). Further H(FM ) = R ×M , the
transformation groupoid of the action of the Lie group R on M by the flow of
y∂y, which reads φt(y) = ety. This follows from [AZ13, Ex. 3.7 (ii)]. The
canonical surjective morphism of Thm. 5.1.3 is

Ξ: R× P → R×M, (t, p) 7→ (t, π(p)).

This can be seen from eq. (5.3), since the vector field X π-projects to y∂y.
Notice that, at points S1 × {0}, the isotropy groups of H(F) are discrete, as for
all regular foliations, while the isotropy group of H(FM ) at the point 0 ∈M is
isomorphic to R.

Figure 5.1: The foliated manifold in Example 5.1.6

A characterization of the quotient map for pullback-foliations

We make the map Ξ in Theorem 5.1.3 more explicit in the special case that
F = Fbig (i.e. when Γc(ker dπ) ⊂ F). In this case F is the pullback of FM by
π.

We will need theorem 4.3.1 from Section 4.3 which gives an isomorphism
ϕ : H(F) ∼−→ π−1(H(FM )). Our alternative description of the map Ξ is as
follows:

Proposition 5.1.7. Let π : P →M be a surjective submersion with connected
fibers. Let F be a singular foliation on P , such that Γc(ker dπ) ⊂ F . Denote
FM the unique singular foliation on M such that π−1(FM ) = F .

Under the canonical isomorphism ϕ : H(F) ∼−→ π−1(H(FM )) given in theorem
4.3.1, the following two morphisms coincide:

• the map Ξ: H(F)→ H(FM ) given by Theorem 5.1.3,
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• the second projection pr2 : π−1(H(FM )) = P×MH(FM )×M P → H(FM ).

Remark 5.1.8. The isomorphism ϕ from Theorem 4.3.1 is described as follows.
Let U be a path holonomy atlas for FM . In theorem 4.3.1 it is proven that
π−1U := {Pπ×tU s×π P : U ∈ U} is a source connected atlas for π−1FM . Then

ϕ[(p, u, q)] = (p, [u], q).

Proof. Fix a path holonomy atlas U for FM . By Remark 5.1.8 the family
π−1U := {Pπ×t U s×π P} is a source connected atlas for F = π−1FM . By the
characterization of Ξ given in the proof of Thm. 5.1.3 we get Ξ([(p0, u0, q0)]) =
[(p0, u0, q0)]M . It is sufficient to show that [(p0, u0, q0)]M = [u0].

Note that π̂ : (π−1U, π ◦ t, π ◦ s) → U ; (p, u, q) 7→ u is a morphism of
bisubmersions for FM , therefore (p0, u0, q0) ∈ (π−1U, π ◦ t, π ◦ s) is equivalent
to u0 ∈ (U, t, s). Then Ξ([(p0, u0, q0)]) = [u0].

Proof of Lemma 5.1.2

To prove Lemma 5.1.2 we give first the following statement.

Lemma 5.1.9. Let (P,F) be a foliated manifold, π : P → M be a surjective
submersion with connected fibers satisfying eq. (5.1).

i) The set

F̂proj := {X ∈ F̂ : X is π-projectable to a vector field on M}

generates F as a C∞c (M)-module.

ii) The singular foliation FM on M satisfying eq. (5.2) admits the following
description:

FM = π∗(F) := SpanC∞c (M){π∗X : X ∈ F̂proj}

Proof. We first make a claim.

Claim: Lemma 5.1.9 holds in the special case that Γc(ker dπ) ⊂ F .

Indeed, in this special case, by Prop. 5.1.1 there is a unique singular foliation FM
onM with π−1(FM ) = F . Given this, i) is a consequence of Definition 1.3.1. For
ii), note that π−1(π∗(F)) = F , as can be checked using i). Since F = π−1FM ,
we obtain FM = π∗(F) by the uniqueness statement in Proposition 5.1.1. This
proves the claim.
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Take Fbig := Γc(ker dπ) + F , a singular foliation satisfying condition of the
above claim.

i) By the claim, F̂big
proj

generates Fbig as a C∞c (M)-module. Take X ∈ F ⊂
Fbig. There exist finitely many Yj ∈ F̂big

proj
and fj ∈ C∞c (P ) such that

X =
∑
j fjYj . By definition of Fbig, we can write Yj = Ŷj +Zj with Ŷj ∈ F̂proj

and Zj ∈ Γ(Ker(dπ)). Then:

X =
∑
j

f ji Yj =
∑
j

f ji Ŷj +
∑
j

f ji Zj .

The last term
∑
j f

j
i Zj = X−

∑
j f

j
i Ŷj lies in F as the difference of two elements

of F , and is π-projectable (to the zero vector field on M). Hence this last term
lies in F̂proj , and we have proven i).

ii) We have π−1(π∗(F)) = π−1(π∗(Fbig)) = Fbig by the claim, and Fbig =
π−1FM by definition. Using the uniqueness in Proposition 5.1.1 we get FM =
π∗(F).

Lemma 5.1.10. Let π : P → M , F and FM be as in Lemma 5.1.2. Then
there exists a family of path holonomy bisubmersions S for F such that

i) for every x ∈ P there is ux ∈ Ux ∈ S carrying the identity diffeomorphism
nearby x,

ii) for any U ∈ S we have that (U, π ◦ t, π ◦ s) is a source connected
bisubmersion for FM . Further it is adapted to a path holonomy
bisubmersions for FM .

Proof. We first show that F is locally finitely generated by π-projectable vector-
fields in F̂ . For any p ∈ P there are a neighborhood U ⊂ P and finitely
many generators Y1, . . . , Yk ∈ X(U) of ι−1

U (F), for ιU the inclusion. Take any
precompact open set V ⊂ U containing p and ρV ∈ C∞c (U) such that ρV = 1
on V . For each Yi, since ρV Yi ∈ F , condition (i) of Lemma 5.1.9 assures that
there is a finite number of projectable elements Xj

i ∈ F̂proj and f
j
i ∈ C∞c (P )

such that:
ρV Yi =

∑
j

f jiX
j
i .

Therefore every element of ι−1
V (F) is a C∞c (V )-linear combination of the Xj

i ,
which are π-projectable and lie in F̂ .

Now, for every point of P , take be a minimal set of π-projectable elements
{X1, . . . , Xn} in F̂ that are local generators of F nearby that point. Let
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(U, t, s) be the corresponding path-holonomy bisubmersion, where U ⊂ Rn × P .
Then (U, π ◦ t, π ◦ s) is a bisubmersion for FM , with source map (λ, p) 7→ π(p)
and target map (λ, p) 7→ expπ(p)(

∑
λiπ∗Xi). A way to see this is to apply

[AS09, Lemma 2.3] to the path-holonomy bisubmersion W ⊂ Rn ×M for FM
corresponding to the generators {π∗X1, . . . , π∗Xn} and to the submersion2

(IdRn , π) : Rn × P → Rn ×M . We observe that (IdRn , π) is a morphism of
bisubmersions from (U, π◦t, π◦s) toW . This shows that the former bisubmersion
is adapted (see Def. 4.1.3) to the latter.

Let S the family given in Lemma 5.1.10. Note that the atlas generated by the
family πS := {(U, π ◦ t, π ◦ s) : U ∈ S} is a source connected atlas for FM .
We finally prove Lemma 5.1.2.

Proof of Lemma 5.1.2: Let S the family of path holonomy bisubmersions for F
given by Lemma 5.1.10, and U the source connected atlas for F generated by
S. We will start showing that U satisfies the condition in Lemma 5.1.2, then
we generalize to any source conneted atlas.

Take U ∈ U , without loss of generality consider U = U1 ◦ · · · ◦ Uk for Ui ∈ S.
Denote πUi := (Ui, π ◦ t, π ◦ s), which are bisubmersions for FM . Note that the
inclusion map ω : U1 ◦ · · · ◦ Uk → πU1 ◦ · · · ◦ πUk makes the following diagram
commute:

U πU1 ◦ · · · ◦ πUk

P M

t s

ω

t s

π

Because of the commutative diagram and since πU1 ◦ · · · ◦πUk is a bisubmersion
for FM one gets that

A := (π ◦ t)−1FM = (π ◦ s)−1FM . (5.4)

Note also that π−1FM = F + kerc(dπ)3, therefore by equation (5.4) we get the
following:

A = t−1(F + kerc(dπ)) = s−1(F + kerc(dπ)),
now using that s and t are submersions we get the following:

A = t−1(F) + t−1(kerc(dπ)) = s−1(F) + s−1(kerc(dπ)),
2More precisely, to its restriction to (IdRn , π)−1(W ) ∩ U .
3We do not distinguish between the map of sections dπ : X(P )→ Γ(π∗TM) and the fiber

wise map dπ. Moreover kerc(dπ) = Γc(ker dπ)
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using that U is a bisubmersion for F one gets

A = kerc(ds) + kerc(dt) + t−1(kerc(dπ)) = kerc(ds) + kerc(dt) + s−1(kerc(dπ)).

Then we get:

A = t−1(kerc(dπ)) + s−1(kerc(dπ)) = kerc(d(π ◦ s)) + kerc(d(π ◦ t)).

Hence (U, π ◦ t, π ◦ s) is a bisubmersion for FM .

The family πU generates a source connected atlas because U is a source connected
atlas. Using the map ω one sees clearly that πU is adapted to the source
connected atlas for FM generated by πS.

Now let U ′ be any source connected atlas for F . Then U ′ is adapted to U (See
Prop. 4.1.16 and Lemma 4.1.7). This means that for any element x ∈ U ′ ∈ U ′
there exists a neighborhood U ′x ⊂ U ′ and a bisubmersion U ∈ U with a morphism
of bisubmersions ωx making the following diagram commute:

U ′x U

P M

t s

ωx

π◦t π◦s

π

The triple (U ′x, t ◦ π, s ◦ π) is a bisubmersion for FM , since the argument for
U can be applied identically to the diagram above. Moreover, since being a
bisubmersion is a local property (see Prop. 1.5.10) we have that (U ′, t ◦ π, s ◦ π)
is a bisubmersion for FM .

The family πU ′ generates a source connected atlas because of the same reason
πU does.

A consequence of Lemma 5.1.2 is as follows:

Corollary 5.1.11. If (U, t, s) is any path holonomy bisubmersion of F , then
πU := (U, π ◦ t, π ◦ s) is a bisubmersion for FM .

If G ⇒ P is a source connected groupoid whose foliation is F , then for any
Hausdorff open set U ⊂ G we get that πU is a bisubmersion for FM .

Remark 5.1.12. Not every bisubmersion (U, t, s) for F satisfies that (U, π ◦
t, π ◦ s) is a bisubmersion for FM . For instance take P := R2, F = 0 and
M = R with map π : P →M given by the first projection. Then FM = 0. Now
take any diffeomorphism φ : P → P that does not preserve the foliation π−1FM
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by the fibers of π. Then (P, Id, φ) is a bisubmersion for F but (P, π, π ◦ φ) is
not a bisubmersion for FM .

This is not a counterexample to Lemma 5.1.2. One can show that (P, Id, φ)
is not adapted to a source connected atlas. Indeed, if U is a bisubmersion for
F = 0 adapted to a source connected atlas, the only diffeomorphism carried by
U is the identity diffeomorphism. The bisubmersion (P, Id, φ) carries φ and φ
is any diffeomorphism of P .

5.2 Quotients of Lie groupoids

In this subsection we will introduce to the reader the structure behind quotients
of Lie groupoids. As a reference we use the book [Mac05] by Mackenzie.

Remember that Lie groupoids can be seen as group-like and manifold-like
structures. Let us recall quotients for groups and quotients for manifolds.

In the category of groups, a quotient map is defined to be a surjective
homomorphism. Let G, H two groups and Ξ: G → H a surjective
homomorphism. Then the subgroup K := ker(Ξ) ⊂ G is normal, it acts
canonically on G and its orbits are the fibers of Ξ.

In the category of manifolds, a quotient map is defined as a surjective submersion.
Let P,M be manifolds and π : P → M a surjective submersion. Then the
equivalence relation R := P ×M P on P is an embedded, wide Lie subgroupoid
of the pair groupoid P × P .
Definition 5.2.1. An equivalence relation R on a manifold P is called smooth
if it is an embedded, wide Lie subgroupoid of the pair groupoid P × P .

It is well known, by the Godement criterion, that there is a bijection between
quotients maps for manifolds and smooth equivalence relations.

In the category of Lie groupoids, the quotient maps are defined as fibrations.
Definition 5.2.2. Let G ⇒ P and H ⇒ M be Lie groupoids. A groupoid
morphism of Lie groupoids Ξ: G → H covering the smooth map π : P →M is
called a fibration if and only if Ξ and π are surjective submersions and the
map G → Hs×π P ;φ 7→ (Ξ(φ), s(φ)) is also a surjective submersion.

For open topological groupoids in [BM16] fibrations are defined replacing in the
above definition surjective submersions by surjective open maps.

The condition for the map G → Hs×π P ;φ 7→ (Ξ(φ), s(φ)) to be a surjective
submersion assures that the composition on H is entirely given by the
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composition in G, more clearly that for two composable elements in H there
exists composable preimages in G.

In [Mac05] there are other two notions to describe a quotient map of Lie
groupoids: smooth congruences and normal subgroupoid systems. They
correspond to smooth equivalences on manifolds and to normal subgroups
respectively.

Definition 5.2.3. Let G ⇒ P be a Lie groupoid. A smooth congruence on
G consists of two smooth equivalences R on G and R on P , such that:

• R⇒ R is a Lie subgroupoid of the Cartesian product G × G ⇒ P × P .

• The map R → Gs×Pr1 R; (g2, g1) 7→ (g2, s(g2), s(g1)) is a surjective
submersion.4

On the other hand, normal subgroupoid systems can be thought of as the group
counterpart to represent fibrations. Note that, if K is a closed embeded wide
Lie subgroupoid of G then, by the Godement criterion, the set

K\G = {K ◦ g : g ∈ G}

has an unique manifold structure making the quotient map q : G → K\G; g 7→ Kg
a surjective submersion. Note also that, the source s : G → P quotients to a
well-defined surjective submersion that we also denote as s : (K\G)→ P .

Definition 5.2.4. A normal subgroupoid system in G ⇒ P is a triple (K, R, θ)
where K is a closed, embeded, wide Lie subgroupoid of G; R is a smooth
equivalence on P ; and θ is an action of R on the map s : (K\G)→ P such that
For all (p, q) ∈ R the following conditions hold:

1. Let g ∈ G with s(g) = q and g1 ∈ G such that θ(p, q)(Kg) = Kg1 then
(t(g1), t(g)) ∈ R.

2. θ(p, q)(Ke(q)) = Ke(p).

3. Let h and g composable elements in G such that s(g) = q. Consider g1
and h1 such that θ(p, q)(Kg) = Kg1 and θ(t(g1), t(g))(Kh) = Kh1, then:

θ(p, q)(Khg) = Kh1g1.

The proof of the following theorem can be found in [Mac05].
4In [Mac05] the author described this condition as certain square diagram being "versal".
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Theorem 5.2.5. 1. If Ξ is a fibration covering π then the pais (R, R) is a
congruence, where R := G ×Ξ G and R := P ×π P . Conversely given a
congruence the quotient map is a fibration.

2. If (K, R, θ) is a normal sub-groupoid system then R together with the
following relation in G given by:

R = {(h, g) ∈ G2 : (s(h), s(g)) ∈ R and θ(s(h), s(g))Kg = Kh},

generate a smooth congruence on G.

3. Let (R, R) be a smooth congruence on G. Then the class of the identity
K is a closed embedded wide Lie subgroupoid of G.
Moreover, for every (p, q) ∈ R and g ∈ G with source q we define

θ(p, q)(Kg) = Kh

where h is any element related to g and with source p. Then θ is a well
defined action on K\G.
Finally (K, R, θ) is a normal subgroupoid system.

The theorem above says that smooth congruences, fibrations and normal
subgroupoids systems are equivalent descriptions for the quotients of Lie
groupoids.

On an equivalent way, replacing submersions with open surjective maps, we get
the same descriptions for open topological groupoids.

Now we want to relate this notion of fibrations with the map Ξ of theorem 5.1.3.
We get that in a special case the map Ξ is indeed a fibration.

Proposition 5.2.6. As in Prop. 5.1.1, let π : P → M be a surjective
submersion with connected fibers. Let F be a singular foliation on P , such
that Γc(ker dπ) ⊂ F . Denote FM the unique singular foliation in M such that
π−1FM = F .

The map Ξ: H(F)→ H(FM ) of Thm. 5.1.3 is a fibration.

Proof. This is a direct consequence of Prop. 5.1.1. The map ϕ : H(F) →
π−1(H(FM )) is an homeomorphism of topological groupoids and the projection
pr2 : π−1(H(FM ))→ H(FM ) is clearly a fibration.

It is important no notice that the map Ξ of theorem 5.1.3 is not allways a
fibration.
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Example 5.2.7. Let P = R2 − ({0} × R+), M = R and π : P → M the first
projection. Take F the foliation given by the horizontal lines, then FM is the
full foliation on M .

In this case, the map H → H′s×πP ;φ 7→ (Ξ(φ), s(φ)) is not surjective. Take θ ∈
H(FM ) such that s(θ) = 1 and t(θ) = −1. The element (θ, (−1, 1)) ∈ Hs×π P ,
nevertheless there is no γ in H(F) satisfying s(γ) = (−1, 1) and Ξ(γ) = θ.

We will show a different case when Ξ is a fibration. To do so we will assume
that π is given as a quotient by a group action.

Induced groupoid actions

Motivated by the case of holonomy groupoids we will address in §5.4, in this
section we consider the following abstract setting:

1. a free and proper action of a Lie group G on a manifold P , with quotient
map π : P →M := P/G,

2. a surjective open morphism of topological groupoids (or a surjective
submersion morphism of Lie groupoids when H and H′ are smooth)
Ξ: H → H′ covering π

3. a group action ~? of G on H by groupoid automorphisms covering the
G-action on P and preserving each fiber of Ξ.

H H′

P M

Ξ

π

Proposition 5.2.8. Assuming 1. 2. 3. above, the map the map ℵ : H →
H′s×π P ;φ 7→ (Ξ(φ), s(φ)) is surjective.

Proof. Let (θ, p) ∈ H(FM )s×π P , there exists a φ ∈ H(F) such that Ξ(φ) = θ.
Then π(s(φ)) = π(p) what means that there exists a unique g ∈ G such that
gs(φ) = p. Then ℵ(g~?φ) = (θ, p) i.e. ℵ is surjective.

Remark 5.2.9. If ℵ is open, then Ξ is a (topological) fibration. We believe it
is open, but we still need to get a full proof.
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Denote K := ker(Ξ), which is a topological subgroupoid of H with space of
objects P . Note that since the action of G on H preserves each fiber of Ξ, we
obtain by restriction a group action of G on K, also by groupoid automorphisms.

For the groupoid R := P ×π P , there is an action θ on s : K\H → P given by
the following equation:

θ(p, q)Kφ = K([p/q]~?φ),

where [p/q] ∈ G is the unique element such that p = [p/q]q.

Theorem 5.2.10. Assuming 1. 2. 3. above, if H and H′ are Lie groupoids
then (K, R, θ) is a normal subgroupoid system.

We have also that the map Ξ is a (smooth) fibration.

Proof. By theorems 5.2.5 and 5.2.5 it is enough to show that (K, R, θ) is a
normal subgroupoid system.

Because Ξ and π are surjective submersion we have that K is an embeded wide
Lie subgroupoid of H and R is a smooth equivalence.

Because ~? is a smooth action by groupoid automorphisms covering the G-action
on P and preserving each Ξ-fiber, we have that θ is indeed a smooth and well
defined action of R on s : K\H → P .

Lemma 5.2.11. The fibers of Ξ are given by the orbits of the action of G on
H composed5 with elements in K. More precisely, the fiber through ξ ∈ H is

K ◦ (G~?ξ) := {χ ◦ (g~?ξ) : χ ∈ K and g ∈ G}.

Proof. Fix ξ1 ∈ H. The above subset K ◦ (G~?ξ1) is certainly contained in the
Ξ-fiber through ξ1.

To show the converse, let ξ2 lie in the same Ξ-fiber as ξ1, then s(ξ2) and s(ξ1)
lie in the same π-fiber. Let g ∈ G such that gs(ξ1) = s(ξ2). As this equals
s(g~?ξ1), the groupoid composition ξ2 ◦ (g~?ξ1)−1 is well-defined, and

Ξ
(
ξ2 ◦ (g~?ξ1)−1) = Ξ(ξ2) ◦ Ξ(g~?ξ1)−1 = Ξ(ξ2) ◦ Ξ(ξ1)−1 = 1π(t(ξ2)),

where we used that Ξ is a groupoid morphism and the action of G preserves
the Ξ fibers, respectively in the first and second equality. As a consequence,
ξ2 ◦ (g~?ξ1)−1 ∈ ker Ξ = K.

5Recall that the composition (multiplication) of the groupoid H is denoted by ◦.
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Remark 5.2.12. While the fibers of a group morphisms are just translates of
the kernel, for morphisms of groupoids over different bases this is no longer
true. This explains why the description of the fibers in Lemma 5.2.11 is slightly
involved.

We will now describe the the fibers of Ξ: H → H′, as follows:

Proposition 5.2.13. There is a Lie groupoid structure on K×G and a groupoid
action of K ×G on t : H → P , whose orbits coincide with the fibers of Ξ.

To prove Prop. 5.2.13 we first need the following construction.

Since the Lie group G acts by groupoid automorphisms on the groupoid K, we
can form the semidirect product groupoid (see [Bro72, §2] and [Bro06, §11.4]).
We obtain a groupoid structure on K ×G with space of objects P , as follows:

a) the source and target maps are respectively
K ×G→ P ; (ξ, g) 7→ g−1s(ξ) and K ×G→ P ; (ξ, g) 7→ t(ξ),

b) the composition is

◦ : (K×G)×P (K×G)→ (K×G); (ξ2, g2)◦(ξ1, g1) 7→ (ξ2◦(g2~?ξ1), g2g1),

c) the unit map is 1: P → K×G; p 7→ (1p, eG), where eG denotes the unit
element of the group G,

d) the inverse map is (−)−1 : K ×G→ K×G; (ξ, g) 7→ (g−1~?ξ−1, g−1).

One checks that the groupoid K ×G acts on the map t : H → P via

? : (K ×G)×P H→ H; ((χ, g), ξ) 7→ (χ, g) ? ξ := χ ◦ (g~?ξ). (5.5)

Proof of Prop. 5.2.13. The orbits of the groupoid action ? ofK×G on t : H → P
are precisely the fibers of Ξ, by Lemma 5.2.11.

5.3 Lie 2-group actions on holonomy groupoids

We start reviewing Lie 2-groups and Lie 2-group actions. In §5.3 we present
an important special case of Thm. 5.1.3 in which the map Ξ is the quotient
map of a Lie 2-group action on H(F) (see Thm. 5.3.7 and Prop. 5.3.8). We
will revisit this special case later on, in Prop. 5.4.12.
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Background on Lie 2-groups

In the sequel will need the notion of Lie 2-group, which we recall here.

Definition 5.3.1. A Lie 2-group is a group in the category of Lie groupoids.

In other words, a Lie 2-group is a Lie groupoid G ⇒ G such that G and G
are Lie groups, so that the group multiplication and group inverse are Lie
groupoid morphisms, and the inclusion of the neutral elements is a Lie groupoid
morphism.

Remark 5.3.2. Equivalently, a Lie 2-group is a groupoid in the category of Lie
groups, i.e. a Lie groupoid G ⇒ G such that G and G are Lie groups; and the
source, the target, the composition and the inverse maps are homomorphisms.

Example 5.3.3. Let G be a Lie group and H ⊂ G a normal Lie subgroup.
Then H acts on G by left multiplication, leading to the action Lie groupoid
H ×G⇒ G. In particular, the groupoid composition is

(h2, h1g) ◦ (h1, g) = (h2h1, g).

Note that its space of arrows has a group structure, namely the semidirect
product by the conjugation action Cg(h) = ghg−1 of G on H. Explicitly, the
group multiplication is given by

(h1, g1) · (h2, g2) = (h1Cg1(h2), g1g2).

We write H oG for H ×G endowed with this group structure.

One can check that H oG⇒ G is a Lie 2-group.

Remark 5.3.4. For the sake of completeness, we provide the description of a
Lie 2-group in full generality. A crossed module of Lie groups consists of Lie
groups H and G, Lie group morphisms C : G→ Aut(H); g 7→ Cg and t : H → G
such that t(Cg(h)) = gt(h)g−1 and Ct(h)(j) = hjh−1 for all g ∈ G and h, j ∈ H.
There is a bijection between Lie 2-groups and crossed module of Lie groups [BS76].
Given a Lie 2-group G ⇒ G, the associated crossed module is given by G, by
H := ker(s) (a normal subgroup of G), by the restriction t : H → G of the target
map, and the Lie group morphisms C : G → Aut(H); g 7→ Cg(h) := ghg−1.
Then G as a Lie group is isomorphic to the semidirect product of G and H
by the action C, and as a Lie groupoid it is isomorphic to the transformation
groupoid of the H-action on G by left multiplication with t(·).

Definition 5.3.5. A Lie 2-group action is a group action in the category of
Lie groupoids.
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Hence an action of a Lie 2-group G ⇒ G on a Lie groupoid H⇒ P consists of
group actions of G on H and of G on P such that the action map

G ×H H

G× P P

t×t s×s t s

is a Lie groupoid map. Notice that such an action is not by Lie groupoid
automorphisms of H. Nevertheless the following result holds:

Proposition 5.3.6. Consider a free and proper action of the Lie 2-group
H oG⇒ G on a Lie groupoid H⇒ P .

Define
R := {(x, gx) ∈ P × P : x ∈ p and g ∈ G},

R := {(θ, (h, g)θ) ∈ H : θ ∈ H and (h, g) ∈ H oG}.

Then (R, R) is a smooth congruence for H.

This implies that H′ := H/(H o G) and M := P/G are manifolds, and that
H′ ⇒ M acquires a canonical Lie groupoid structure. Further the projection
H → H′ is a fibration.

Proof. 6 By Thm. 5.2.5, we only need to prove that (R, R) is a smooth
congruence. Following the definition of smooth congruences 5.2.3 we need to
prove three statements:

1. The sets R and R are smooth equivalence relations:
Because H o G and G act freely and properly we get that R and R
are smooth equivalence relations. So H′ := H/R = H/(H o G) and
M := P/R = P/G are manifolds.

2. R⇒ R is a Lie subgroupoid of the Cartesian product H×H⇒ P × P :
Because R ⊂ H×H and R ⊂ P ×P are embedded submanifolds one only
needs to prove the following.

• The manifold R is the base for R: For (p, gp) ∈ R there is
(ep, (e, g)ep) ∈ R as its identity. Also, for any (θ, (h, g)θ) ∈ R we
get:

(s× s)((θ, (h, g)θ)) = (s(θ), gs(θ)) ∈ R

(t× t)((θ, (h, g)θ)) = (t(θ), (t(h)g)t(θ)) ∈ R
6For a proof in a special case, see also [CZ13, Prop. 2.10].
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• Closeness under composition: Take composable elements
(θ1, (h1, g1)θ1), (θ2, (h2, g2)θ2) ∈ R, then:

s(θ1) = t(θ2)

g1s(θ1) = s((h1, g1)θ1) = t((h2, g2)θ2) = (t(h2)g2)t(θ2)

By the second equality above and because the G-action is free on P
then g1 = t(h2)g2, which implies that (h1, g1), (h2, g2) ∈ H oG are
also composable. By axioms of 2-Lie group actions we get:

(θ1◦θ2, (h1, g1)θ1◦(h2, g2)θ2) = (θ1◦θ2, ((h1, g1)◦(h2, g2))(θ1◦θ2)) ∈ R.

• Closeness under inverse:

(θ, (h, g)θ)−1 = (θ−1, (h−1, hg)θ−1) ∈ R.

3. The map τ : R → Hs×Pr1 R; (θ2, θ1) 7→ (θ2, s(θ2), s(θ1)) is a surjective
submersion:
Note that R is diffeomorphic to H×H ×G. Also R is diffeomorphic to
P ×G, therefore H×M R is diffeomorphic to H×G.
The map τ under the diffeomorphisms given above, is the following map

τ : H×H ×G→ H×G; (θ, h, g) 7→ (θ, g),

which is clearly a surjective submersion.

Although we do not need the above result, we mention it here because it puts
in perspective Theorem 5.3.7 below.

A Lie 2-group action on the holonomy groupoid of a pullback
foliation

Fix a foliated manifold (P,F) and a free and proper action of a connected Lie
group G on P preserving F . We assume that the infinitesimal generators of the
G-action lie in the global hull F̂ , i.e. kerc(dπ) ⊂ F . This occurs exactly when
F is the pullback of FM by π, as in Prop. 5.1.7.
Theorem 5.3.7. Let G be a connected Lie group acting freely and properly on
a foliated manifold (P,F). Assume that Γc(ker dπ) ⊂ F .

Then there is a canonical Lie 2-group action of GoG⇒ G on the holonomy
groupoid H(F).
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Here GoG⇒ G is endowed with the Lie 2-group structure of Ex. 5.3.3.

Proof. We make use the canonical isomorphism H(F) ∼= π−1(H(FM )) given in
Theorem 4.3.1.

There is a canonical Lie 2-group action of GoG on π−1(H(FM )), extending
the given action of G on the base P , given by

(h, g) ∗ (p, [v], q) = (hgp, [v], gq). (5.6)

It can be checked by computations that this defines a group action and
groupoid morphism. Alternatively, as mentioned in [CZ13, §3], we can use
the isomorphism of Lie 2-groups to G × G ⇒ G (the pair groupoid, with
product group structure) given by GoG ∼= G×G, (h, g) 7→ (hg, g). Under this
isomorphism, (5.6) becomes

(G×G)× π−1(H(FM ))→ π−1(H(FM )), ((h, g), (p, [v], q)) 7→ (hp, [v], gq),

which is easily checked to be a Lie 2-group action.

Proposition 5.3.8. Assume the set-up of Theorem 5.3.7.

The orbits of the Lie 2-group action of G o G ⇒ G on H(F) are exactly the
fibers of the canonical map Ξ: H(F)→ H(FM ). In particular, the quotient of
H(F) by the action is canonically isomorphic to H(FM ).

Proof. The formula (5.6) makes clear what the orbits are, and Prop. 5.1.7
shows that they agree with the Ξ-fibers.

5.4 Quotients of foliations by group actions: the
general case

In this section we consider the following set-up:

a foliated manifold (P,F),
a free and proper action of a connected Lie group G on P preserving F .
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Note that this implies the set-up of §5.1, then the condition of equation (5.1)
in Thm. 5.1.3 is satisfied. Hence we obtain a surjective groupoid morphism

Ξ: H(F)→ H(FM ) (5.7)

covering the projection π : P →M := P/G, where the latter is endowed with
the foliation FM specified there.

Unlike the special case considered in §5.3, the Ξ-fibers are not the orbits of a
Lie 2-group action in general. In this section we make two general statements
about the Ξ-fibers. First, after lifting the G-action on P to an action on H(F)
by groupoid automorphisms, we characterize the fibers of Ξ as the orbits of a
groupoid action (see Proposition 5.4.5). Second we establish the existence of a
canonical Lie 2-group action on H(F) whose orbits lie inside the Ξ-fibers, but
which might fail to be the whole fiber (see Prop. 5.4.10 and Cor. 5.4.11).

Groupoid actions on the holonomy groupoid

Here we characterize the fibers of Ξ as the orbits of a groupoid action. We start
by showing that the G action on P admits a canonical lift to H(F).

Lemma 5.4.1. Let ĝ : P → P be the diffeomorphism given by the action of
g ∈ G. Take a path holonomy atlas U and a bisubmersion W ∈ U . The triple

gW := (W, sg := ĝ ◦ s, tg := ĝ ◦ t)

is a bisubmersion. Moreover gW is adapted to U .

Proof. Because the G-action preserves F , the pullback foliation ĝ−1F equals
F , implying that gW is a bisubmersion.

We prove that gW is adapted to U . Notice that g(W1 ◦W2) = gW1 ◦ gW2 for
any W1,W2 ∈ U . Hence it is sufficient to assume that W is a path holonomy
bisubmersion, as any element in the path-holonomy atlas is a composition of
such elements.

Denote by v1, · · · , vn ∈ F the vector fields that give rise to the path holonomy
bisubmersion W (hence W ⊂ Rn × P ). Consider the push-forward vector fields
ĝ∗v1, · · · , ĝ∗vn ∈ F . The associated path-holonomy bisubmersion is defined on

W ′ := {(v, gp) : (v, p) ∈W} ⊂ Rn × P.

Since gW →W ′, (v, p) 7→ (v, gp) is an isomorphism of bisubmersions and since
W ′ is adapted to U (being a path holonomy bisubmersion), we conclude that
gW is adapted to U .
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Now we introduce the lifted action

~? : G×H(F)→ H(F), g~?[v] := [v]gW (5.8)
where, for any v in a path holonomy bisubmersion W , we denote by [v]gW the
class of v regarded as an element of gW . This is clearly well-defined and indeed
a Lie group action. Further, this action is by groupoid automorphisms:

Lemma 5.4.2. For all g ∈ G the map g~?(−) : H(F) → H(F) is a groupoid
morphism covering the diffeomorphism ĝ : P → P .

Proof. Using the construction of g~?(−) it is clear that the source and target map
commute with the map ĝ. Further g~?(−) preserves the groupoid composition
since g(W1◦W2) = gW1◦gW2 for any path-holonomy bisubmersionsW1,W2.

Lemma 5.4.3. The orbits of the lifted action ~? lie in the fibers of Ξ : H(F)→
H(FM ).

Proof. The morphism Ξ is induced by the identity map from any source
connected atlas U for F to the atlas πU := {(U, π ◦ t, π ◦ s) : U ∈ U} for
FM , see the characterization of Ξ given in the proof of Thm 5.1.3.

Fix g ∈ G, and u ∈ U ∈ U . By the above and since π ◦ ĝ = π, the images under
Ξ of both [u] and g~?[u] = [u]gU are the class of the element u ∈ (U, π ◦ t, π ◦ s).
In particular, Ξ([u]) = Ξ(g~?[u]), showing the desired statement.

Example 5.4.4. (Regular foliations) As discussed in Rem. 4.1.19, if F is
a regular foliation there is a groupoid morphism Q : Π(F)→ H(F) where Π(F)
is the monodromy groupoid, consisting of homotopy classes of paths lying in the
leaves of F . The Lie group G acts canonically on Π(F) by translating paths:
G×Π(F)→ Π(F); (g, [γ]) 7→ [gγ]. It is easy to see that Q is G-equivariant, i.e.
Q(g[γ]) = g~?(Q[γ]).

Notice that the Lie group action of G on P , the groupoid morphism Ξ: H(F)→
H(FM ) (see eq. (5.7)) and the lifted Lie group action ~? of G on H(F) (see
eq. (5.8)) fit in the abstract setting described at in Prop. 5.2.13, thanks to
Lemma 5.4.2 and Lemma 5.4.3. Therefore we can apply Prop. 5.2.13 to obtain
a complete description of the Ξ-fibers:

Proposition 5.4.5. Denote K := ker Ξ. The topological groupoid K×G defined
in Prop. 5.2.13 acts on H(F) by

((χ, g), ξ) 7→ χ ◦ (g~?ξ).

The orbits of this action are precisely the fibers of Ξ.
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An instance of Prop. 5.4.5 is Example 5.1.6, where we have G = S1 and
ker Ξ = 1P .

A canonical Lie 2-group action on the holonomy groupoid

Here we prove that there always is a Lie 2-group action on H(F) whose orbits
lie inside the fibers of the morphism Ξ. In general however the orbits do not
coincide with the (connected components of) the Ξ-fibers. The formulae for this
Lie 2-group action are suggested by the special case we will spell out in §5.4.

Denote the Lie algebra of G by g, and by vx ∈ X(P ) the generator of the action
corresponding to x ∈ g.

Lemma 5.4.6. The subspace h := {x ∈ g : vx ∈ F̂} is a Lie ideal of g.

Proof. Since F is G-invariant, for all y ∈ g we have [vy,F ] ⊂ F , or equivalently
[vy, F̂ ] ⊂ F̂ . Let x ∈ h. Then for all y ∈ g we have v[y,x] = [vy, vx] ∈ F̂ , that is,
[y, x] ∈ h.

Denote by H the unique connected Lie subgroup of G with Lie algebra h.
Lemma 5.4.6 implies that H is a normal subgroup, hence as in Example 5.3.3
we obtain a Lie 2-group H oG⇒ G.

We define a Lie group action of H ofH(F). It is not by groupoid automorphisms,
unlike the lifted G-action ~? introduced in §5.4, but rather it preserves every
source fiber. In order to do so, we need a lemma.

Lemma 5.4.7. There is a canonical groupoid morphism

φ : H × P → H(F),

where H×P denotes the transformation groupoid of the H-action on P obtained
restring the action of G.

The morphism φ can be described as follows: take (h, p) ∈ H × P and denote
by ĥ : P → P the diffeomorphism corresponding to h under the G-action. Then
φ(h, p) is the unique element of H(F) carrying the diffeomorphism ĥ near p.

Proof of Lemma 5.4.7. Denote by FH the regular foliation on P by orbits of
the H-action. Its holonomy groupoid is exactly H × P , as follows from [AS09,
Ex. 3.4(4)] (use that the Lie groupoid H × P gives rise to the foliation FH and
is effective, i.e. the identity diffeomorphism on M is carried only by identity
elements of the Lie groupoid, due to the freeness of the action).
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Since FH ⊂ F , we are done applying [Zam18, Lemma 4.4] in the special case of
the pair groupoid over P .

The description of φ given in the statement holds since φ is a groupoid morphism
covering IdP .

Lemma 5.4.8. We have φ(H × P ) ⊂ K := ker(Ξ).

Proof. We use Lemma 5.4.7. A point φ(h, p) of the l.h.s. carries near p the
diffeomorphism ĥ (the diffeomorphism corresponding to h under the G-action).
The element φ(h, p) admits a representative u in a source connected atlas (U, t, s)
for F . By Lemma 5.1.2 the trio (U, π ◦ t, π ◦ s) is a bisubmersion for FM . The
point u, viewed as a point in (U, π ◦ t, π ◦ s), carries IdM , since ĥ preserves each
π-fiber. This implies that Ξ([u]) = 1π(q), by the characterization of Ξ given in
the proof of Thm. 5.1.3.

Example 5.4.9. (Regular foliations) As discussed in Rem. 4.1.19, if F is
a regular foliation there is a groupoid morphism Q : Π(F)→ H(F). The orbits
of the H-action lie inside the leaves of F , hence for every path h(t) in H and
p ∈ P the homotopy class [h(t)p] is an element of Π(F). Moreover, the freeness
of the G-action implies that the elements [h(t)p], [h̃(t)p] ∈ Π(F) have the same
holonomy if and only if h(1) = h̃(1) and h(0) = h̃(0). Therefore there is a
well-defined injective groupoid morphism

H × P → H(F); (h, p) 7→ Q[h(t)p],

where h(t) is any path in H with h(0) = e and h(1) = h. This morphism is
precisely φ. It is clear using Prop. 5.1.5 that its image lies inside K = ker(Ξ).

Consider now the following map, obtained applying the morphism φ of Lemma
5.4.7 and left-multiplying:

~? : H ×H(F)→ H(F), h ~?ξ := φ(h, t(ξ)) ◦ ξ. (5.9)

Notice that φ being a groupoid morphism implies that ~? is group action. We
now assemble the group action ~? and the lifted action ~?:

Proposition 5.4.10. The map

? : (H oG)×H(F)→ H(F), (h, g) ? ξ := h ~? (g~?ξ)

is a Lie 2-group action.
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Proof. We first observe that if ξ ∈ H(F) carries a diffeomorphism ψ, then g~? ξ
carries the diffeomorphism ĝψĝ−1.

We also observe the following two facts, which hold because both the left and
the right side carry the same diffeomorphism (as can be seen using the above
observation), the definition of the holonomy groupoid and because of Lemma
4.1.2:

i) the map φ : H × P → H(F) satisfies the following equivariance property:

g~? φ(h, p) = φ(cgh, gp),

where cg denotes conjugation by g.

ii) For all h ∈ H and ξ ∈ H(F) we have

h~? ξ = φ(h, t(ξ)) ◦ ξ ◦ φ(h−1, hs(ξ)).

To show that ? is a group action, the main requirement is to show that
((h1, g1)(h2, g2)) ? ξ equals (h1, g1) ?

(
(h2, g2) ? ξ

)
for all (hi, gi) ∈ H o G

and ξ ∈ H(F). This holds by a straightforward computation, in which the
second term is re-written using the fact that φ is a groupoid morphism and is
G-equivariant (fact i) above).

To show that ? is a groupoid morphism, the main requirement is to show that
(h1h2, g2) ? (ξ1 ◦ ξ2) and

(
(h1, g1) ? ξ1

)
◦
(
(h2, g2) ? ξ2

)
agree, where g1 = h2g2

and s(ξ1) = t(ξ2). Upon using that φ is a groupoid morphism and the action ~?
is by groupoid automorphisms, this boils down to applying7 fact ii) above.

Lemma 5.4.3 and Lemma 5.4.8 imply:
Corollary 5.4.11. The orbits of the Lie 2-group action ? of Prop. 5.4.10 lie
inside the Ξ-fibers.

An alternative description for the Lie 2-group action of Thm
5.3.7

We obtained the formula for the Lie 2-group action of H o G in §5.4 by
considering a special case, as we now explain. Assume the set-up of Thm. 5.3.7,
in particular that Γc(ker dπ) ⊂ F (i.e., F̂ contains the infinitesimal generators
of the G-action). There we defined an action of GoG on H(F) by means of
the canonical isomorphism ϕ : H(F) ∼−→ π−1H(FM ).

The goal of this subsection is to prove the following proposition:
7with h := h2 and ξ := g2~?ξ1
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Proposition 5.4.12. Consider these Lie 2-group actions of GoG on H(F):

• the action8 ? described in Prop. 5.4.10,

• the action described in Thm. 5.3.7.

These two actions coincide. In other words, under the canonical isomorphism
ϕ : H(F) ∼−→ π−1H(FM ) given in Thm. 4.3.1 we have

ϕ((h, g) ? ξ) = (h, g) ∗ ϕ(ξ)

for all (g, h) ∈ GoG and ξ ∈ H(F), where ∗ is the action given in eq. (5.6).

We will prove this statement by analyzing the restrictions of the actions to
{e} ×G and G× {e}. (Notice that these two subgroups generate GoG as a
group, since every element (h, g) can be written as (h, e)(e, g)). We denote by
ϕ : H(F) ∼−→ π−1H(FM ) the canonical isomorphism given in Thm. 4.3.1.
Lemma 5.4.13. Under the isomorphism ϕ, the lifted action ~? of G introduced
in §5.4 and the restriction of the Lie 2-group action ∗ of eq. (5.6) agree:

ϕ(g~?ξ) = (e, g) ∗ ϕ(ξ)

for all g ∈ G and ξ ∈ H(F).

Proof. Let U be a path holonomy atlas for FM . Recall that by Rem. 5.1.8, the
pullback-atlas π−1U is an atlas for π−1(FM ) equivalent to a path-holonomy
atlas. Fix ξ ∈ H(F). Take a representative w in a bisubmersions W in the
path holonomy atlas of π−1(FM ). By the above, there is a path holonomy
bisubmersion U in U and a locally defined morphism of bisubmersions

τ : (W, t, s)→ (π−1U, t, s)

mapping w to some point (p, v, q). By definition, ϕ([w]) = (p, [v], q).

Now fix g ∈ G. Recall that the bisubmersion gW := (W, ĝ ◦ s, ĝ ◦ t) was defined
in Lemma 5.4.1. The same map τ is also a morphism of bisubmersions

gW → (π−1U, ĝ ◦ t, ĝ ◦ s).

The latter bisubmersion is isomorphic to (π−1U, t, s) via (p′, v′, q′) 7→
(gp′, v′, gq′). By composition we obtain a morphism of bisubmersions gW →
(π−1U, t, s) mapping w to (gp, v, gq). Hence g~?[w] := [w]gW agrees with
[(gp, v, gq)] ∈ H(F), and therefore under ϕ it is mapped to (gp, [v], gq) =
(e, g) ∗ ϕ([w]).

8Note that, under our assumptions on F , in the setting of Prop. 5.4.10 we have H = G,
because the Lie subalgebra h introduced in Lemma 5.4.6 equals the whole of g.
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Lemma 5.4.14. Under the isomorphism ϕ, the action ~? of H introduced in eq.
(5.9) and the restriction of the Lie 2-group action ∗ of eq. (5.6) agree:

ϕ(h ~?ξ) = (h, e) ∗ ϕ(ξ)

for all h ∈ G and ξ ∈ H(F).

Proof. Take an arbitraty element ξ ∈ H(F) and a path holonomy atlas U for
FM . Let (p, u, q) ∈ π−1U ∈ π−1U be a representative of ξ, and let f be a local
diffeomorphism carried at (p, u, q).

Fix h ∈ G, and denote by ĥ : P → P the diffeomorphism corresponding to h
under the G-action. Note that the transformation groupoid G× P carries the
diffeomorphism ĥ at (h, p). Hence any representative of φ(h, p) ∈ H(F) in π−1U
carries this diffeomorphism, where φ is the groupoid morphism of Lemma 5.4.7.
In turn, this implies that any representative of φ(h, p) ◦ [(p, u, q)] ∈ H(F) will
carry ĥ ◦ f . Note that (hp, u, q) ∈ π−1U also carries ĥ ◦ f . By the definition of
holonomy groupoid (using the definition of the holonomy groupoid and Lemma
4.1.2) it follows that h ~?[(p, u, q)] = [(hp, u, q)].

We conclude that

ϕ(h ~?[(p, u, q)]) = ϕ([(hp, u, q)]) = (hp, [u], q) = (h, e) ∗ ϕ([(p, u, q)]),

using in the second equality the description of the isomorphism ϕ given in Rem.
5.1.8.

Proof of Prop. 5.4.12. The proposition follows from

ϕ((h, g) ? ξ) = ϕ(h ~? (g~?ξ)) = (h, e) ∗ ((e, g) ∗ ϕ(ξ)) = (h, g) ∗ ϕ(ξ),

where we used Lemmas 5.4.13 and 5.4.14 in the second equality.

Remark 5.4.15. The image of φ : G×P → H(F) is the kernel of Ξ: H(F)→
H(FM ). Indeed, for every (h, q) ∈ G × P , we have φ(h, q) = h ~?1q ∈ H(F).
Under the identification ϕ : H(F) ∼−→ π−1H(FM ), this element corresponds to
(h, e) ∗ ϕ(1q) = (hq, 1π(q), q) ∈ π−1H(FM ) by Lemma 5.4.14. Under the same
identification, ker(Ξ) corresponds to ker(pr2) = P ×π M ×π P , by Prop. 5.1.7.
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