Dr. Florian Hanisch

ehemaliger Mitarbeiter

Kontakt
...

Sprechstunde: Dienstags, 13-14 Uhr oder nach Vereinbarung per email 

  • Differential geometry with a focus on super geometry
  • Infinite dimensional geometry
  • Geometric analysis and hyperbolic PDE
  • Mathematical physics

Publications

2017 | Magnetic Geodesics via the Heat Flow | Volker Branding, Florian Hanisch Zeitschrift: Asian Journal of Mathematics Verlag: International Press Seiten: 995-1014 Band: 21, no. 6 Link zur Publikation, Link zum Preprint

Magnetic Geodesics via the Heat Flow

Autoren: Volker Branding, Florian Hanisch (2017)

Magnetic geodesics describe the trajectory of a particle in a Riemannian manifold under the influence of an external magnetic field. In this article, we use the heat flow method to derive existence results for such curves. We first establish subconvergence of this flow to a magnetic geodesic under certain boundedness assumptions. It is then shown that these conditions are satisfied provided that either the magnetic field admits a global potential or the initial curve is sufficiently small. Finally, we discuss different examples which illustrate our results.

Zeitschrift:
Asian Journal of Mathematics
Verlag:
International Press
Seiten:
995-1014
Band:
21, no. 6

2017 | Supersymmetric Path Integrals II: The Fermionic Integral and Pfaffian Line Bundles | Florian Hanisch, Matthias Ludewig Link zum Preprint

Supersymmetric Path Integrals II: The Fermionic Integral and Pfaffian Line Bundles

Autoren: Florian Hanisch, Matthias Ludewig (2017)

The Pfaffian line bundle of the covariant derivative and the transgression of the spin lifting gerbe are two canonically given real line bundles on the loop space of an oriented Riemannian manifold. It has been shown by Prat-Waldron that these line bundles are naturally isomorphic as metric line bundles and that the isomorphism maps their canonical sections to each other. In this paper, we provide a vast generalization of his results, by showing that there are natural sections of the corresponding line bundles for any N∈ℕ, which are mapped to each other under this isomorphism (with the previously known being the one for N=0). These canonical sections are important to define the fermionic part of the supersymmetric path integral on the loop space. 

2017 | Supersymmetric Path Integrals I: Differential Forms on the Loop Space | Florian Hanisch, Matthias Ludewig Link zum Preprint

Supersymmetric Path Integrals I: Differential Forms on the Loop Space

Autoren: Florian Hanisch, Matthias Ludewig (2017)

In this paper, we construct an integral map for differential forms on the loop space of Riemannian spin manifolds. In particular, the even and odd Bismut-Chern characters are integrable by this map, with their integrals given by indices of Dirac operators. We also show that our integral map satisfies a version of the localization principle in equivariant cohomology. This should provide a rigorous background for supersymmetry proofs of the Atiyah-Singer Index theorem.

2016 | Supergeometry in locally covariant quantum field theory | Thomas Paul Hack, Florian Hanisch, Alexander Schenkel Zeitschrift: Comm. Math. Phys. Verlag: Springer Seiten: 615-673 Band: 342, no. 2 Link zur Publikation, Link zum Preprint

Supergeometry in locally covariant quantum field theory

Autoren: Thomas Paul Hack, Florian Hanisch, Alexander Schenkel (2016)

In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc→S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc→eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the enriched framework. As examples we analyze the superparticle in 1|1-dimensions and the free Wess-Zumino model in 3|2-dimensions.

Zeitschrift:
Comm. Math. Phys.
Verlag:
Springer
Seiten:
615-673
Band:
342, no. 2

2014 | A Supermanifold structure on Spaces of Morphisms between Supermanifolds | Florian Hanisch Link zum Preprint

A Supermanifold structure on Spaces of Morphisms between Supermanifolds

Autoren: Florian Hanisch (2014)

The aim of this work is the construction of a "supermanifold of morphisms X→Y", given two finite-dimensional supermanifolds X and Y. More precisely, we will define an object SC(X,Y) in the category of supermanifolds proposed by Molotkov and Sachse. Initially, it is given by the set-valued functor characterised by the adjunction formula Hom(PxX, Y) ≅ Hom(P, SC(X,Y)) where P ranges over all superpoints. We determine the structure of this functor in purely geometric terms: We show that it takes values in the set of certain differential operators and establish a bijective correspondence to the set of sections in certain vector bundles associated to X and Y. Equipping these spaces of sections with infinite-dimensional manifold structures using the convenient setting by Kriegl and Michor, we obtain at a supersmooth structure on SC(X,Y), i.e. a supermanifold of all morphisms X→Y.

2010 | The Spectral Action for Dirac Operators with skew-symmetric Torsion | Florian Hanisch, Frank Pfäffle, Christoph Stephan Zeitschrift: Comm. Math. Phys. Verlag: Springer Seiten: 877-888 Band: 300, no. 3 Link zur Publikation, Link zum Preprint

The Spectral Action for Dirac Operators with skew-symmetric Torsion

Autoren: Florian Hanisch, Frank Pfäffle, Christoph Stephan (2010)

We derive a formula for the gravitational part of the spectral action for Dirac operators on 4-dimensional manifolds with totally anti-symmetric torsion. We find that the torsion becomes dynamical and couples to the traceless part of the Riemann curvature tensor. Finally we deduce the Lagrangian for the Standard Model of particle physics in presence of torsion from the Chamseddine-Connes Dirac operator.

Zeitschrift:
Comm. Math. Phys.
Verlag:
Springer
Seiten:
877-888
Band:
300, no. 3