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1. The stochastic bandit problem

Useful material : See Bubeck et.al (2012), and also Cesa-Bianchi et.al (2006) for a

broader perspective - see also

https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/ (and part ii)

for a helpful blog post.

1.1. The problem

1.2. Upper bounds

1.3. Lower bounds

An important question is on whether the algorithm presented in the last subsection is optimal. But
first, how can we characterise optimality? A useful tool for characterizing the efficiency of a statistical
methods is the concept of minimax lower bounds - this framework is related to information theory.

1.3.1. Examples in a classical problem

1.3.2. Back to the two armed bandit problem

We consider the two-armed bandit problem from the last subsection. Let S be the set of all two-armed
bandit problems with distributions that have support on [0, 1]. Let R̄n(S,A) be the pseudo-regret
that algorithm A would suffer on problem S ∈ S.

Theorem 1. It holds that

inf
A algorithm

sup
S∈S

R̄n(S,A) ≥ min
( log(nu2)

640u
, nu/64

)
.

For u ∈ (0, 1/4], consider the bandit problems where the first distribution is a Dirac mass in
1/2 + u/2, and where the second distribution is a Bernoulli of parameter 1/2 + u - let us write
P1/2+u,A,E1/2+u,A for the distribution (resp. expectation) of the data for this problem when al-
gorithm A is used. Consider also the bandit problems where the first distribution is a Dirac mass
in 1/2 + u/2, and where the second distribution is a Bernoulli of parameter 1/2 - let us write
P1/2,A,E1+u,A for the distribution (resp. expectation) of the data for this problem when algorithm
A is used. The previous theorem follows directly from the following lemma.

∗Contact : carpentier@math.uni-potsdam.de. Webpage with course material TBA : http://www.math.

uni-potsdam.de/~carpentier/page3.html
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Lemma 1. For u ∈ [0, 1/4], it holds that

inf
A algorithm

[
E1/2+u,A[n− T2,n] + E1/2,AT2,n

]
≥ min

( log(nu2)

640u2
, n/64

)
.

Proof Let A be an algorithm, we write for short P1/2+u,E1/2+u, for P1/2+u,A,E1/2+u,A. Let us
write (X1, . . . , XT2,n) for the samples collected by sampling the second distribuction.

Let for T > 0

Lµ(x1, ..., xT ) = µ
∑

i xi(1− µ)T−
∑

i xi = exp
(

log(
µ

1− µ
)
∑
i

xi + T log(1− µ)
)
.

Let ΩT = {T2,n = T}. We have

P1/2+u(ΩT ) = E1/2

[L1/2+u(X1, . . . , XT )

L1/2(X1, . . . , XT )
1{ΩT }

]
= E1/2

[
exp

(
log(

1 + 2u

1− 2u
)
∑
i

Xi + T log(1− 2u)
)
1{ΩT }

]
.

Consider now the event

ξ =
{
∀T ≤ n, |

∑
i≤T

Xi − T/2| ≤
√
T log(2t)

}
.

Note that P1/2(ξ) ≥ 1− 1/n2.
We have

P1/2+u(ΩT ) ≥ E1/2

[
log(

1 + 2u

1− 2u
)
∑
i

Xi + T log(1− 2u)1{Ω ∩ ξ}

]

≥ E1/2

[
exp

(
log(

1 + 2u

1− 2u
)
(
T/2−

√
T log(2T )

})
+ T log(1− 2u)

)
1{ΩT ∩ ξ}

]

Now note that since 0 < u ≤ 1/4, we have log(1− 2u) ≥ −2u− 2u2 and

log(
1 + 2u

1− 2u
) ≥ log((1 + 2u)(1 + 2u)) = log(1 + 4u+ 4u2) ≥ 4u− 8u2.

So we have

P1/2+u(ΩT ) ≥ E1/2

[
exp

(
(4u− 8u2)

(
T/2−

√
T log(2T )

)
+ T (−2u− 2u2)

)
1{ΩT ∩ ξ}

]

≥ E1/2

[
exp

(
− 6Tu2 − 4u

√
T log(2T )

)
1{ΩT ∩ ξ}

]

≥ exp
(
− 6Tu2 − 4u

√
T log(2T )

)
E1/2

[
1{ΩT ∩ ξ}

]
≥ exp

(
− 6Tu2 − 4u

√
T log(2T )

)
[P1/2(ΩT )− 1/n2]

:= M−1(T, u)[P1/2(T2,n = T )− 1/n2].
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i.e.

P1/2+u(T1,n = n− T )(n− T ) ≥M−1(T, u)[P1/2(T2,n = T )− 1/n2](n− T ).

This implies that

E1/2+uT1,n ≥
∑
T

M−1(T, u)[P1/2(T2,n = T )− 1/n2](n− T )

≥
∑
T

exp(−6Tu2 − 4u
√
T log(2T ))[P1/2(T2,n = T )− 1/n2](n− T )

≥ exp(−12T̄ u2 − 8u
√
T̄ log(2T̄ ))[

∑
T≤2T̄

P1/2(T2,n = T )− 1/n](n− 2T̄ )

≥ exp(−2T̄ u2 − 8u
√
T̄ log(2T̄ ))[P1/2(T2,n ≤ 2T̄ )− 1/n](n− 2T̄ ),

for any T̄ ≤ n. Set T̄ = E1/2T2,n. It holds that P1/2(T2,n ≤ 2T̄ ) ≥ 1/2, so that

E1/2+uT1,n ≥ exp(−12T̄ u2 − 8u
√
T̄ log(2T̄ ))[1/2− 1/n](n− 2T̄ )

≥ exp(−max
(

20T̄ u2, log(2T̄ )
)

)(n− 2T̄ )/4.

So this implies that

E1/2+uT1,n + T̄ ≥ exp(−20u2T̄ − log(2T̄ ))n/32 + T̄

≥ min
( log(nu2)

640u2
, n/64

)
.

This concludes the proof.
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1.4. Exercises : part 2

Lower bounds arguments. Consider the 2− armed stochastic bandit setting where the objective
is to minimize the pseudi-regret.

For u ∈ (0, 1/4], consider the bandit problems where the first distribution is a Dirac mass in
1/2 + u/2, and where the second distribution is a Bernoulli of parameter 1/2 + u - let us write
P1/2+u,A,E1/2+u,A for the distribution (resp. expectation) of the data for this problem when al-
gorithm A is used. Consider also the bandit problems where the first distribution is a Dirac mass
in 1/2 + u/2, and where the second distribution is a Bernoulli of parameter 1/2 - let us write
P1/2,A,E1+u,A for the distribution (resp. expectation) of the data for this problem when algorithm
A is used. The previous theorem follows directly from the following lemma.

1. Write the likelihood of T samples that are distributed according to a Bernoulli distribution of
parameter µ.

2. Consider the event
ξ =

{
∀T ≤ n, |

∑
i≤T

Xi − T/2| ≤
√
T log(2t)

}
.

Prove that P1/2(ξ) ≥ 1− 1/n2.
3. Prove that for any T ≤ n

P1/2+u(T2,n = T ) ≥ exp
(
− 6Tu2 − 4u

√
T log(2T )

)
[P1/2(T2,n = T )− 1/n2].

4. Deduce from this that

E1/2+uT1,n ≥ exp(−max
(

20T̄ u2, log(2T̄ )
)

)(n− 2T̄ )/4.

5. Conclude that

inf
A algorithm

sup
S∈S

R̄n(S,A) ≥ min
( log(nu2)

640u
, nu/64

)
.

6. Recall Pinsker’s inequality. Deduce the problem independent bound from it.
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