Mathematical machine learning part IV : active and online learning

Prof. Dr. Gilles Blanchard, Dr. Alexandra Carpentier*, Dr. Jana de Wiljes, Dr. Martin Wahl

1. The stochastic bandit problem

Useful material : See Bubeck et.al (2012), and also Cesa-Bianchi et.al (2006) for a broader perspective - see also
https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/ (and part ii)
for a helpful blog post.

1.1. The problem

1.2. Upper bounds

1.3. Lower bounds

An important question is on whether the algorithm presented in the last subsection is optimal. But first, how can we characterise optimality? A useful tool for characterizing the efficiency of a statistical methods is the concept of minimax lower bounds - this framework is related to information theory.

1.3.1. Examples in a classical problem

1.3.2. Back to the two armed bandit problem

We consider the two-armed bandit problem from the last subsection. Let \mathcal{S} be the set of all two-armed bandit problems with distributions that have support on $[0,1]$. Let $\bar{R}_{n}(S, \mathcal{A})$ be the pseudo-regret that algorithm \mathcal{A} would suffer on problem $S \in \mathcal{S}$.

Theorem 1. It holds that

$$
\mathcal{A} \inf _{\text {algorithm }} \sup _{S \in \mathcal{S}} \bar{R}_{n}(S, \mathcal{A}) \geq \min \left(\frac{\log \left(n u^{2}\right)}{640 u}, n u / 64\right) .
$$

For $u \in(0,1 / 4]$, consider the bandit problems where the first distribution is a Dirac mass in $1 / 2+u / 2$, and where the second distribution is a Bernoulli of parameter $1 / 2+u$ - let us write $\mathbb{P}_{1 / 2+u, \mathcal{A}}, \mathbb{E}_{1 / 2+u, \mathcal{A}}$ for the distribution (resp. expectation) of the data for this problem when algorithm \mathcal{A} is used. Consider also the bandit problems where the first distribution is a Dirac mass in $1 / 2+u / 2$, and where the second distribution is a Bernoulli of parameter $1 / 2$ - let us write $\mathbb{P}_{1 / 2, \mathcal{A}}, \mathbb{E}_{1+u, \mathcal{A}}$ for the distribution (resp. expectation) of the data for this problem when algorithm \mathcal{A} is used. The previous theorem follows directly from the following lemma.

[^0]Lemma 1. For $u \in[0,1 / 4]$, it holds that

$$
\inf _{\mathcal{A}} \text { algorithm }\left[\mathbb{E}_{1 / 2+u, \mathcal{A}}\left[n-T_{2, n}\right]+\mathbb{E}_{1 / 2, \mathcal{A}} T_{2, n}\right] \geq \min \left(\frac{\log \left(n u^{2}\right)}{640 u^{2}}, n / 64\right)
$$

Proof Let \mathcal{A} be an algorithm, we write for short $\mathbb{P}_{1 / 2+u}, \mathbb{E}_{1 / 2+u}$, for $\mathbb{P}_{1 / 2+u, \mathcal{A}}, \mathbb{E}_{1 / 2+u, \mathcal{A}}$. Let us write ($X_{1}, \ldots, X_{T_{2, n}}$) for the samples collected by sampling the second distribuction.

Let for $T>0$

$$
L_{\mu}\left(x_{1}, \ldots, x_{T}\right)=\mu^{\sum_{i} x_{i}}(1-\mu)^{T-\sum_{i} x_{i}}=\exp \left(\log \left(\frac{\mu}{1-\mu}\right) \sum_{i} x_{i}+T \log (1-\mu)\right)
$$

Let $\Omega_{T}=\left\{T_{2, n}=T\right\}$. We have

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}\left(\Omega_{T}\right) & =\mathbb{E}_{1 / 2}\left[\frac{L_{1 / 2+u}\left(X_{1}, \ldots, X_{T}\right)}{L_{1 / 2}\left(X_{1}, \ldots, X_{T}\right)} \mathbf{1}\left\{\Omega_{T}\right\}\right] \\
& =\mathbb{E}_{1 / 2}\left[\exp \left(\log \left(\frac{1+2 u}{1-2 u}\right) \sum_{i} X_{i}+T \log (1-2 u)\right) \mathbf{1}\left\{\Omega_{T}\right\}\right]
\end{aligned}
$$

Consider now the event

$$
\xi=\left\{\forall T \leq n,\left|\sum_{i \leq T} X_{i}-T / 2\right| \leq \sqrt{T \log (2 t)}\right\}
$$

Note that $\mathbb{P}_{1 / 2}(\xi) \geq 1-1 / n^{2}$.
We have

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}\left(\Omega_{T}\right) & \geq \mathbb{E}_{1 / 2}\left[\log \left(\frac{1+2 u}{1-2 u}\right) \sum_{i} X_{i}+T \log (1-2 u) \mathbf{1}\{\Omega \cap \xi\}\right] \\
& \left.\geq \mathbb{E}_{1 / 2}\left[\exp \left(\log \left(\frac{1+2 u}{1-2 u}\right)(T / 2-\sqrt{T \log (2 T)}\}\right)+T \log (1-2 u)\right) \mathbf{1}\left\{\Omega_{T} \cap \xi\right\}\right]
\end{aligned}
$$

Now note that since $0<u \leq 1 / 4$, we have $\log (1-2 u) \geq-2 u-2 u^{2}$ and

$$
\log \left(\frac{1+2 u}{1-2 u}\right) \geq \log ((1+2 u)(1+2 u))=\log \left(1+4 u+4 u^{2}\right) \geq 4 u-8 u^{2}
$$

So we have

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}\left(\Omega_{T}\right) & \geq \mathbb{E}_{1 / 2}\left[\exp \left(\left(4 u-8 u^{2}\right)(T / 2-\sqrt{T \log (2 T)})+T\left(-2 u-2 u^{2}\right)\right) \mathbf{1}\left\{\Omega_{T} \cap \xi\right\}\right] \\
& \geq \mathbb{E}_{1 / 2}\left[\exp \left(-6 T u^{2}-4 u \sqrt{T \log (2 T)}\right) \mathbf{1}\left\{\Omega_{T} \cap \xi\right\}\right] \\
& \geq \exp \left(-6 T u^{2}-4 u \sqrt{T \log (2 T)}\right) \mathbb{E}_{1 / 2}\left[\mathbf{1}\left\{\Omega_{T} \cap \xi\right\}\right] \\
& \geq \exp \left(-6 T u^{2}-4 u \sqrt{T \log (2 T)}\right)\left[\mathbb{P}_{1 / 2}\left(\Omega_{T}\right)-1 / n^{2}\right] \\
& :=M^{-1}(T, u)\left[\mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n^{2}\right] .
\end{aligned}
$$

i.e.

$$
\mathbb{P}_{1 / 2+u}\left(T_{1, n}=n-T\right)(n-T) \geq M^{-1}(T, u)\left[\mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n^{2}\right](n-T)
$$

This implies that

$$
\begin{aligned}
\mathbb{E}_{1 / 2+u} T_{1, n} & \geq \sum_{T} M^{-1}(T, u)\left[\mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n^{2}\right](n-T) \\
& \geq \sum_{T} \exp \left(-6 T u^{2}-4 u \sqrt{T \log (2 T)}\right)\left[\mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n^{2}\right](n-T) \\
& \geq \exp \left(-12 \bar{T} u^{2}-8 u \sqrt{\bar{T} \log (2 \bar{T})}\right)\left[\sum_{T \leq 2 \bar{T}} \mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n\right](n-2 \bar{T}) \\
& \geq \exp \left(-2 \bar{T} u^{2}-8 u \sqrt{\bar{T} \log (2 \bar{T})}\right)\left[\mathbb{P}_{1 / 2}\left(T_{2, n} \leq 2 \bar{T}\right)-1 / n\right](n-2 \bar{T})
\end{aligned}
$$

for any $\bar{T} \leq n$. Set $\bar{T}=\mathbb{E}_{1 / 2} T_{2, n}$. It holds that $\mathbb{P}_{1 / 2}\left(T_{2, n} \leq 2 \bar{T}\right) \geq 1 / 2$, so that

$$
\begin{aligned}
\mathbb{E}_{1 / 2+u} T_{1, n} & \geq \exp \left(-12 \bar{T} u^{2}-8 u \sqrt{\bar{T} \log (2 \bar{T})}\right)[1 / 2-1 / n](n-2 \bar{T}) \\
& \geq \exp \left(-\max \left(20 \bar{T} u^{2}, \log (2 \bar{T})\right)\right)(n-2 \bar{T}) / 4
\end{aligned}
$$

So this implies that

$$
\begin{aligned}
\mathbb{E}_{1 / 2+u} T_{1, n}+\bar{T} & \geq \exp \left(-20 u^{2} \bar{T}-\log (2 \bar{T})\right) n / 32+\bar{T} \\
& \geq \min \left(\frac{\log \left(n u^{2}\right)}{640 u^{2}}, n / 64\right)
\end{aligned}
$$

This concludes the proof.

References

Bubeck, Sebastien, and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multiarmed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2013.
Cesa-Bianchi, Nicolo, and Gabor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

1.4. Exercises : part 2

Lower bounds arguments. Consider the 2 - armed stochastic bandit setting where the objective is to minimize the pseudi-regret.

For $u \in(0,1 / 4]$, consider the bandit problems where the first distribution is a Dirac mass in $1 / 2+u / 2$, and where the second distribution is a Bernoulli of parameter $1 / 2+u$ - let us write $\mathbb{P}_{1 / 2+u, \mathcal{A}}, \mathbb{E}_{1 / 2+u, \mathcal{A}}$ for the distribution (resp. expectation) of the data for this problem when algorithm \mathcal{A} is used. Consider also the bandit problems where the first distribution is a Dirac mass in $1 / 2+u / 2$, and where the second distribution is a Bernoulli of parameter $1 / 2$ - let us write $\mathbb{P}_{1 / 2, \mathcal{A}}, \mathbb{E}_{1+u, \mathcal{A}}$ for the distribution (resp. expectation) of the data for this problem when algorithm \mathcal{A} is used. The previous theorem follows directly from the following lemma.

1. Write the likelihood of T samples that are distributed according to a Bernoulli distribution of parameter μ.
2. Consider the event

$$
\xi=\left\{\forall T \leq n,\left|\sum_{i \leq T} X_{i}-T / 2\right| \leq \sqrt{T \log (2 t)}\right\}
$$

Prove that $\mathbb{P}_{1 / 2}(\xi) \geq 1-1 / n^{2}$.
3. Prove that for any $T \leq n$

$$
\mathbb{P}_{1 / 2+u}\left(T_{2, n}=T\right) \geq \exp \left(-6 T u^{2}-4 u \sqrt{T \log (2 T)}\right)\left[\mathbb{P}_{1 / 2}\left(T_{2, n}=T\right)-1 / n^{2}\right]
$$

4. Deduce from this that

$$
\mathbb{E}_{1 / 2+u} T_{1, n} \geq \exp \left(-\max \left(20 \bar{T} u^{2}, \log (2 \bar{T})\right)\right)(n-2 \bar{T}) / 4
$$

5. Conclude that

$$
\inf _{\mathcal{A}} \sup _{\text {algorithm }} \sup _{S \in \mathcal{S}} \bar{R}_{n}(S, \mathcal{A}) \geq \min \left(\frac{\log \left(n u^{2}\right)}{640 u}, n u / 64\right)
$$

6. Recall Pinsker's inequality. Deduce the problem independent bound from it.

[^0]: * Contact : carpentier@math.uni-potsdam.de. Webpage with course material TBA : http://www.math. uni-potsdam.de/~carpentier/page3.html

