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Here are some precisions on the two-armed bandit case. At the end of this document are two very
useful classical tools : Hoeffding’s inequality, and union bounds (plus application to bandit data).

Special notes : the two armed stochastic bandit problem

Consider the two armed bandit problem with distributions ν1 and ν2, that both have support on
[0, 1], and associated means µ1, µ2 and gap ∆ = |µ1 − µ2| > 0. Write k∗ = arg max(µ1, µ2).

First naive strategy

Consider the strategy that tries both distributions u times (up to time t = 2u then), and then from

time t = 2u+ 1 on always picks the distribution k̂ = arg max(µ̂1, µ̂2) until time n. This is described
in Algorithm 3.

Algorithm 2: First naive two-armed strategy.

Parameter: u
Initialisation: Pull u samples from each distribution
for t = 2u+ 1, . . . , n do

Set kt = k̂ = arg max(µ̂1,2u, µ̂2,2u) and collect Xt ∼ νk̂.
end for

Without loss of generality, assume that µ1 < µ2. It holds that

P(k̂ 6= k∗) = P(µ̂1,2u > µ̂2,2u)

= P(µ̂1,2u − µ̂2,2u > 0) = P
( 1

u

∑
i≤u

(X1,i −X2,i + ∆) > ∆
)
.

We now apply Hoeffding’s inequality from Theorem 1 to obtain that

P
( 1

u

∑
i≤u

(X1,i −X2,i + ∆) > ∆
)
≤ 2 exp(−u∆2/2),

as the Zi = X1,i −X2,i −∆ are in [−2, 2] and have mean 0.
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The expected regret of this strategy is

R̄n = u∆ + (n− 2u)∆P(k̂ 6= k∗)

≤ u∆ + n∆2 exp(−u∆2/2).

Assume first that 8 log(n∆2)/∆2 ≤ n. Then setting u = b2 log(n∆2)/∆2c+ 1 we get

R̄n ≤ 3
log(n∆2)

∆
+

2

∆
≤ 3

log(n∆2)

∆
.

Otherwise if 8 log(n∆2)/∆2 ≥ n, we set u = n/2 and have

R̄n = n∆/2 ≤ 4
√
n.

Remarks :

• Both bounds are sub-linear - in particular they are much smaller that the average gain of the
best oracle strategy nmax(µ1µ2) if max(µ1µ2) > 0 does not depend on n.

• These values of u minimise the bound - we will see later that they are in some sense optimal.
• The first bound depends on ∆ - it is called problem dependent. The second one does not - it

is called problem independent.

Porblem : u is then a parameter of the algorithm - we cannot callibrate it with ∆ if we do not
know ∆.

Better strategy

Consider the strategy that picks both distributions the same amount of time until one of them seems
clearly better than the other, the comparison being made using a confidence interval.

Algorithm 2:Better two-armed strategy.

Initialisation: Pull one sample from each distribution

while |µ̂1,t − µ̂2,t| ≤ 2
√

log(4n2)
t do

Pull one sample from each distribution
t← t+ 2

end while
Set T + 1 for the moment of exit of the while loop.
for t = T + 1, . . . , n do

Set kt = k̂ = arg max(µ̂1,T , µ̂1,T ) and collect Xt ∼ νk̂
t← t+ 1

end for

Let us write

ξ =
{
∀k ≤ 2,∀t ≤ n,

∣∣1
t

∑
i≤t

Xk,i − µk

∣∣ ≤√ log(4n2)

2t

}
.

By Corollary 1, it holds that
P(ξ) ≥ 1− 1/n.
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Note first that on ξ, it holds by definition that k̂ = k∗. Note also that on ξ, we have that

∆ ≤ 4

√
log(4n2)

T
, i.e. T ≤ 16

log(4n2)

∆2
.

So the expected regret of this strategy is

R̄n ≤ ET∆ + n∆P(k̂ 6= k∗)

≤ 16
log(4n2)

∆2
+ ∆ + 1 ≤ 100

log(2n)

∆2
.

Remarks :

• No parameter in this strategy, and same results as before!
• Very close to the UCB-strategy, i.e. sample the distribution that maximise the upper confidence

bound. Such a proof is very similar to the proof of UCB, but with two distributions.

Useful classical results

Hoeffding’s inequality

We recall Hoeffding’s inequality.

Theorem 1 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables such that their
distribution ν has support in [0, 1], and mean µ. It holds that

P
(∣∣ 1
n

∑
i

Xi − µ
∣∣ > ε

)
≤ 2 exp

(
− 2nε2

)
.

Equivalently, it holds with probability larger than 1− δ that

∣∣ 1
n

∑
i

Xi − µ
∣∣ ≤√ log(2/δ)

2n
.

See e.g. in Bubeck et.al (2012) for a proof.
Remarks :

• Hoeffding’s inequality is proven through the MGF, basically bounding the MGF of the Xi−µ
by the one of a Rademacher random variable. Intuitvely, the idea is that bounded random
variable on [−1, 1] and of mean 0 are dominated stochastically by a Rademacher random
variable - and so the sum of the

∑
iXi − nµ is stochastically dominated by the sum of n

i.i.d. Racemacher. Hoeffding’s inequality is tight up to constants in this case.
• The bound on the probability of deviations of maginitude more than ε of 1

n

∑
iXi−µ, namely

2 exp
(
−2nε2

)
, is of same order as the probability of deviations of maginitude more than ε of a

Gaussian of mean 0 and variance n. For this reason, it is said that 1
n

∑
iXi−µ is sub-Gaussian

under the assumption of the previous theorem.
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Union bound

We recall the union bound principle (first principles in probability).

Theorem 2 (Union bound). Let ξ1, . . . , ξn be events of probability respcetively 1− δ1, . . . , 1− δn. It
holds that

P
(⋂

i

ξi

)
≥ 1−

∑
i

δi.

This simple basic inequality is not always tight, but it can be extremely useful when combined
with Hoeffding’s inequality.

Corollary 1. Let for any k ≤ K, Xk,1, . . . , Xk,n be i.i.d. random variables such that their distribu-
tion νk has support in [0, 1], and mean µk. It holds that

P
(
∃k ≤ K,∃t ≤ n,

∣∣1
t

∑
i≤t

Xk,i − µk

∣∣ > ε√
t

)
≤ 2nK exp

(
− 2ε2

)
.

Equivalently, it holds with probability larger than 1− nKδ that ∀k ≤ K, ∀t ≤ n

∣∣1
t

∑
i≤t

Xk,i − µk

∣∣ ≤√ log(2/δ)

2t
.

Or again, equivalently, it holds with probability larger than 1− δ that ∀k ≤ K,∀t ≤ n

∣∣1
t

∑
i≤t

Xk,i − µk

∣∣ ≤√ log(2nK/δ)

2t
.

Remarks :

• Union bound plus Hoeffding is basically the only probabilistic tools that are needed for the
understanding of standard stochastic bandit algorithms.

• The union bound is not tight and can be slightly improved - but not by a large extent.
• The corollary above is the first step in most standard stochastic bandit proofs - and all stochas-

tic bandit proofs in this class. Once this step is done, bandit proofs usually amount in proving
that on the large event where empirical means concentrate well around their means, the algo-
rithm behaves as wished even in the worst case of this event.
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