Exemple sheet for the class "Monte-Carlo inference"

Alexandra Carpentier

A.CARPENTIER@STATSLAB.CAM.AC.UK

Editor:

Exercise 1: Explain how to implement a generator for random variables that follow an exponential distribution of parameter λ.

Exercise 2: Let $\left(f_{i}\right)_{i \leq n}$ be a collection of n densities on some domain \mathcal{X} according to a measure μ. Assume that you can sample according to them. Explain how to implement a generator from a mixture density $\sum_{i=1}^{k} w_{i} f_{i}$ where the w_{i} are positive weights of sum 1 .

Exercise 3: Explain how to generate a Bernoulli random variable from a uniform random variable by the method of inversion. Do you think it is efficient? Given a uniform random variable, how many Bernoulli random variable do you think you can generate?

Exercise 4: Let f be a density defined on $[0,1]$ and L-Lipschitz, and such that $f>a$ for some constant a.

1. Explain how you would generate a sample from f. What would you do if you do not have access to f but to $C f$ where C is an unknown constant?
2. Let f_{u} be the density of f restricted on $[0, u]$. Express it in function of f and u.
3. Explain how you would generate a sample from f_{u} by rejection sampling, using the best possible envelope knowing L and a.
Exercise 5: Consider the uniform measure μ on $[0,1]$. Consider two functions m and s defined on $[0,1]$, bounded in absolute value by M, and measurable with respect to μ. Assume additionally that $s \geq 0$. You wish to estimate the integral of m, and when you sample at a point x of $[0,1]$, you get a noisy sample

$$
Y=m(x)+s(x) \epsilon,
$$

where $\epsilon \sim \mathcal{N}(0,1)$. You wish to construct an estimate of the integral of m using n samples collected in this way. Consider a measurable partition $\left(\Omega_{i}\right)_{0 \leq i \leq K-1}$ of $[0,1]$.

1. What is the conditional distribution of sampling uniformly on $[0,1]$? What is the associated mean and variance?
2. What is the conditional distribution of sampling uniformly on Ω_{i} ? What is the associated mean and variance?
3. What is the best allocation you can do if you do not know anything about f ? What is the best allocation you can do if you know the variances of sampling in the Ω_{i} ?
4. What happens if the functions m and s are Lipschitz, and if the Ω_{i} are actually the segments $\left[\frac{i}{K}, \frac{i+1}{K}\right]$, when K is very large?

Exercise 6:

- 1. Explain how to generate a Gaussian distribution $\mathcal{N}(0,1)$ of mean 0 and variance 1 by the Box Muller method. Prove that it works.

Let $X_{0}=0$. We consider the following $\operatorname{AR}(1)$ model defined recursively for any $t \geq 0$:

$$
X_{t+1}=c+a X_{t}+\epsilon_{t},
$$

where the ϵ_{t} are i.i.d. Gaussian $\mathcal{N}(0,1)$ of mean 0 and variance 1 . We observe the chain X_{1}, \ldots, X_{n} until some time $n \geq 1$. We would like to estimate (a, c) using Bayesian inference.

- 2. Write the likelihood of the samples X_{1}, \ldots, X_{n}.
- 3. In order to apply Bayesian inference to this chain, we set some priors to (a, c). We choose $a \sim \mathcal{N}(0,1)$ and $b \sim \mathcal{N}(0,1)$, with a, b independent of each other. What is the posterior distribution $\pi(a, c)$ of (a, c) knowing X_{1}, \ldots, X_{n} ? What are the marginal distributions $\pi(. \mid a)$ and $\pi(. \mid c)$?
- 4. Explain how you can use Gibbs sampler using these posterior distributions. What is the output of Gibbs sampler? How can you use this output for inferring (a, c) ?

Exercise 7 (optional): Consider a distribution $\pi\left(x_{1}, x_{2}\right)$ defined on $\{1, \ldots, M\}^{2}$ for $M \geq$ 2 and such that $\pi>0$ in any point of its domain. Assume that for any $x_{2} \in\{1, \ldots, M\}$, you can generate a sample X_{1} according to the conditional distribution $\pi\left(. \mid x_{2}\right)$, and also that for any $x_{1} \in\{1, \ldots, M\}$, you can generate a sample X_{2} according to the conditional distribution $\pi\left(. \mid x_{1}\right)$.

1. Explain how you would implement Gibbs sampler in this case.
2. Prove that the chain generated in this way has stationary distribution π.

Exercise 8 (optional): Let f be a density that is uniformly continuous according to the uniform measure on $[0,1]$, and that is bounded by M. Let ϕ be a function defined on $[0,1]$ such that $|\phi| \leq 1$. Let $\theta=\int_{[0,1]} \phi(x) f(x) d x$.

- 1. Remind what is importance sampling for estimating θ. What is in this case the optimal distribution that minimises the variance of the importance sampling estimate? We write g^{*} for this distribution.

Assume that you dispose of n uniform on $[0,1]$ and i.i.d. samples U_{1}, \ldots, U_{n}.

- 2. Propose a technique for sampling from f using these uniform samples. What is the expected number of samples from distribution f you obtain with this method? Recall the asymptotic distribution of the proportion associated to this number. Propose a confidence interval for n large enough. How can you use these samples for estimating θ ?
- 3. Propose a technique for sampling from g^{*} using these uniform samples. What is the expected number of samples from distribution g^{*} you obtain with this method? Recall the asymptotic distribution of the proportion associated to this number. Propose a confidence interval for n large enough. When proposing your method, you can only use punctual values of ϕ and f, the constant M, and the fact that $|\phi| \leq 1$.
- 4. Can you use the samples from 3. for estimating θ ?

Exercice 9 (optional): Consider a density f with respect to the uniform measure μ on $[0,1]$. We assume here that we know some constant $L>0$ such that f is L-Lipshitz, i.e. such that $\forall(x, y) \in[0,1]^{2}$, we have

$$
|f(x)-f(y)| \leq L|x-y| .
$$

We also assume that we know a constant $a>0$ such that $\forall x \in[0,1]$, we have $f(x) \geq a$.

- 1. Explain how to generate with a computer a sample of density f with the rejection sampling method.
- 2. Let us say that the necessary amount of time to simulate a uniform random variable on a computer is 1 . What is the expected time needed for the method of question 1. for generating one sample?

Let $I>0$. Consider, for any integer $i \in\{0, \ldots, I\}$, and any integer $j \in\left\{0, \ldots, 2^{j}-1\right\}$, the interval $\mathcal{I}_{i, j}=\left[\frac{j}{2^{i}}, \frac{j+1}{2^{i}}\right]$. Let also $f_{i, j}$ be the density associated to the measure $\mu\left(. \mid \mathcal{I}_{i, j}\right)$, i.e.

$$
f_{i, j}(y)=f(y) \mathbf{1}\left\{y \in \mathcal{I}_{i, j}\right\} \times \frac{1}{\int_{\mathcal{I}_{i, j}} f(x) d x},
$$

where $\mathbb{1}\left\{y \in \mathcal{I}_{i, j}\right\}$ is the indicator function that takes value 1 if $y \in \mathcal{I}_{i, j}$ and 0 otherwise. Let for any $i \in\{1, \ldots, I\}$, and any $j \in\left\{0, \ldots, 2^{j}-1\right\}$

$$
p_{i, j}=\frac{\int_{\mathcal{I}_{i, j}} f(x) d x}{\int_{\mathcal{I}_{i-1,\lfloor j / 2\rfloor}} f(x) d x} .
$$

Note that for i, j as above, and j even, it holds that $p_{i, j}+p_{i, j+1}=1$. Consider the following simulation technique.

```
Initialize: \(j=0\)
for \(i=1, \ldots, I\) do
    Sample \(B_{i}\) according to a Bernoulli distribution of parameter \(p_{i, j+1}\)
    Set \(j \leftarrow 2 j+B_{i}\)
end for
Output: \(X \sim f_{I, j} d \mu\)
```

- 3. Prove that the density of a sample X generated by this algorithm is f.
- 4. Explain how to generate with a computer a sample of density $f_{i, j}$ with the rejection sampling method. Choose the best possible enveloppe you can, knowing the constants a and L. Can you bound the expected number of uniform samples you will need to use in order to generate one sample from $f_{i, j}$?
- 5. The necessary amount of time for simulating a Bernoulli random variable of parameter $1 / 2$ is b (and $b \leq 1$). Can you bound the expected time needed for the algorithm studied in question 2., if you simulate according to the $f_{i, j}$ as in question 3., for generating one sample? Use this bound to deduce an optimal number of iteration I^{*} (that minimizes this bound). Compare the computational costs of the procedures of question 1. and 2. .

